Loading…

Modeling and prediction of Turkey’s electricity consumption using Artificial Neural Networks

Artificial Neural Networks are proposed to model and predict electricity consumption of Turkey. Multi layer perceptron with backpropagation training algorithm is used as the neural network topology. Tangent-sigmoid and pure-linear transfer functions are selected in the hidden and output layer proces...

Full description

Saved in:
Bibliographic Details
Published in:Energy conversion and management 2009-11, Vol.50 (11), p.2719-2727
Main Authors: Kavaklioglu, Kadir, Ceylan, Halim, Ozturk, Harun Kemal, Canyurt, Olcay Ersel
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c404t-175feced4d7374a25fdad9e90a41b2a15e89d84871841f50fbe37e556d67fe873
cites cdi_FETCH-LOGICAL-c404t-175feced4d7374a25fdad9e90a41b2a15e89d84871841f50fbe37e556d67fe873
container_end_page 2727
container_issue 11
container_start_page 2719
container_title Energy conversion and management
container_volume 50
creator Kavaklioglu, Kadir
Ceylan, Halim
Ozturk, Harun Kemal
Canyurt, Olcay Ersel
description Artificial Neural Networks are proposed to model and predict electricity consumption of Turkey. Multi layer perceptron with backpropagation training algorithm is used as the neural network topology. Tangent-sigmoid and pure-linear transfer functions are selected in the hidden and output layer processing elements, respectively. These input–output network models are a result of relationships that exist among electricity consumption and several other socioeconomic variables. Electricity consumption is modeled as a function of economic indicators such as population, gross national product, imports and exports. It is also modeled using export–import ratio and time input only. Performance comparison among different models is made based on absolute and percentage mean square error. Electricity consumption of Turkey is predicted until 2027 using data from 1975 to 2006 along with other economic indicators. The results show that electricity consumption can be modeled using Artificial Neural Networks, and the models can be used to predict future electricity consumption.
doi_str_mv 10.1016/j.enconman.2009.06.016
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_34877244</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0196890409002404</els_id><sourcerecordid>21085425</sourcerecordid><originalsourceid>FETCH-LOGICAL-c404t-175feced4d7374a25fdad9e90a41b2a15e89d84871841f50fbe37e556d67fe873</originalsourceid><addsrcrecordid>eNqFkU1uFDEQRq0IpAyBK6DehF03Zbf_ekcUQYIUwiZssRy7HHnS0x7sbtDsuEaux0nwZALbrEoqv68-6ZmQtxQ6ClS-X3c4uTRt7NQxgKED2dX1EVlRrYaWMaZekBXQQbZ6AH5MXpWyBoBegFyR71-SxzFOd42dfLPN6KObY5qaFJqbJd_j7s_vh9LgiG7O0cV519Susmy2j9RS9tGzPMdQH-3YXOOSH8f8K-X78pq8DHYs-OZpnpBvnz7enF-2V18vPp-fXbWOA59bqkRAh5571StumQje-gEHsJzeMksF6sFrrhXVnAYB4RZ7hUJIL1VArfoT8u5wd5vTjwXLbDaxOBxHO2FaiulrVjHOnwUZBS04ExWUB9DlVErGYLY5bmzeGQpm792szT_vZu_dgDR1XYOnTw22ODuGbCcXy_80o0OvpdSV-3DgsHr5GTGb4mK9WH8gV9nGp_hc1V_7vJ8b</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>21085425</pqid></control><display><type>article</type><title>Modeling and prediction of Turkey’s electricity consumption using Artificial Neural Networks</title><source>Elsevier:Jisc Collections:Elsevier Read and Publish Agreement 2022-2024:Freedom Collection (Reading list)</source><creator>Kavaklioglu, Kadir ; Ceylan, Halim ; Ozturk, Harun Kemal ; Canyurt, Olcay Ersel</creator><creatorcontrib>Kavaklioglu, Kadir ; Ceylan, Halim ; Ozturk, Harun Kemal ; Canyurt, Olcay Ersel</creatorcontrib><description>Artificial Neural Networks are proposed to model and predict electricity consumption of Turkey. Multi layer perceptron with backpropagation training algorithm is used as the neural network topology. Tangent-sigmoid and pure-linear transfer functions are selected in the hidden and output layer processing elements, respectively. These input–output network models are a result of relationships that exist among electricity consumption and several other socioeconomic variables. Electricity consumption is modeled as a function of economic indicators such as population, gross national product, imports and exports. It is also modeled using export–import ratio and time input only. Performance comparison among different models is made based on absolute and percentage mean square error. Electricity consumption of Turkey is predicted until 2027 using data from 1975 to 2006 along with other economic indicators. The results show that electricity consumption can be modeled using Artificial Neural Networks, and the models can be used to predict future electricity consumption.</description><identifier>ISSN: 0196-8904</identifier><identifier>EISSN: 1879-2227</identifier><identifier>DOI: 10.1016/j.enconman.2009.06.016</identifier><identifier>CODEN: ECMADL</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Applied sciences ; Artificial Neural Networks ; Economic data ; Electric energy ; Electricity consumption ; Energy ; Energy economics ; Exact sciences and technology ; General, economic and professional studies ; Methodology. Modelling ; Turkey</subject><ispartof>Energy conversion and management, 2009-11, Vol.50 (11), p.2719-2727</ispartof><rights>2009 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c404t-175feced4d7374a25fdad9e90a41b2a15e89d84871841f50fbe37e556d67fe873</citedby><cites>FETCH-LOGICAL-c404t-175feced4d7374a25fdad9e90a41b2a15e89d84871841f50fbe37e556d67fe873</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=21938668$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Kavaklioglu, Kadir</creatorcontrib><creatorcontrib>Ceylan, Halim</creatorcontrib><creatorcontrib>Ozturk, Harun Kemal</creatorcontrib><creatorcontrib>Canyurt, Olcay Ersel</creatorcontrib><title>Modeling and prediction of Turkey’s electricity consumption using Artificial Neural Networks</title><title>Energy conversion and management</title><description>Artificial Neural Networks are proposed to model and predict electricity consumption of Turkey. Multi layer perceptron with backpropagation training algorithm is used as the neural network topology. Tangent-sigmoid and pure-linear transfer functions are selected in the hidden and output layer processing elements, respectively. These input–output network models are a result of relationships that exist among electricity consumption and several other socioeconomic variables. Electricity consumption is modeled as a function of economic indicators such as population, gross national product, imports and exports. It is also modeled using export–import ratio and time input only. Performance comparison among different models is made based on absolute and percentage mean square error. Electricity consumption of Turkey is predicted until 2027 using data from 1975 to 2006 along with other economic indicators. The results show that electricity consumption can be modeled using Artificial Neural Networks, and the models can be used to predict future electricity consumption.</description><subject>Applied sciences</subject><subject>Artificial Neural Networks</subject><subject>Economic data</subject><subject>Electric energy</subject><subject>Electricity consumption</subject><subject>Energy</subject><subject>Energy economics</subject><subject>Exact sciences and technology</subject><subject>General, economic and professional studies</subject><subject>Methodology. Modelling</subject><subject>Turkey</subject><issn>0196-8904</issn><issn>1879-2227</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNqFkU1uFDEQRq0IpAyBK6DehF03Zbf_ekcUQYIUwiZssRy7HHnS0x7sbtDsuEaux0nwZALbrEoqv68-6ZmQtxQ6ClS-X3c4uTRt7NQxgKED2dX1EVlRrYaWMaZekBXQQbZ6AH5MXpWyBoBegFyR71-SxzFOd42dfLPN6KObY5qaFJqbJd_j7s_vh9LgiG7O0cV519Susmy2j9RS9tGzPMdQH-3YXOOSH8f8K-X78pq8DHYs-OZpnpBvnz7enF-2V18vPp-fXbWOA59bqkRAh5571StumQje-gEHsJzeMksF6sFrrhXVnAYB4RZ7hUJIL1VArfoT8u5wd5vTjwXLbDaxOBxHO2FaiulrVjHOnwUZBS04ExWUB9DlVErGYLY5bmzeGQpm792szT_vZu_dgDR1XYOnTw22ODuGbCcXy_80o0OvpdSV-3DgsHr5GTGb4mK9WH8gV9nGp_hc1V_7vJ8b</recordid><startdate>20091101</startdate><enddate>20091101</enddate><creator>Kavaklioglu, Kadir</creator><creator>Ceylan, Halim</creator><creator>Ozturk, Harun Kemal</creator><creator>Canyurt, Olcay Ersel</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>C1K</scope><scope>SOI</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope></search><sort><creationdate>20091101</creationdate><title>Modeling and prediction of Turkey’s electricity consumption using Artificial Neural Networks</title><author>Kavaklioglu, Kadir ; Ceylan, Halim ; Ozturk, Harun Kemal ; Canyurt, Olcay Ersel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c404t-175feced4d7374a25fdad9e90a41b2a15e89d84871841f50fbe37e556d67fe873</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Applied sciences</topic><topic>Artificial Neural Networks</topic><topic>Economic data</topic><topic>Electric energy</topic><topic>Electricity consumption</topic><topic>Energy</topic><topic>Energy economics</topic><topic>Exact sciences and technology</topic><topic>General, economic and professional studies</topic><topic>Methodology. Modelling</topic><topic>Turkey</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kavaklioglu, Kadir</creatorcontrib><creatorcontrib>Ceylan, Halim</creatorcontrib><creatorcontrib>Ozturk, Harun Kemal</creatorcontrib><creatorcontrib>Canyurt, Olcay Ersel</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Environment Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><jtitle>Energy conversion and management</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kavaklioglu, Kadir</au><au>Ceylan, Halim</au><au>Ozturk, Harun Kemal</au><au>Canyurt, Olcay Ersel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling and prediction of Turkey’s electricity consumption using Artificial Neural Networks</atitle><jtitle>Energy conversion and management</jtitle><date>2009-11-01</date><risdate>2009</risdate><volume>50</volume><issue>11</issue><spage>2719</spage><epage>2727</epage><pages>2719-2727</pages><issn>0196-8904</issn><eissn>1879-2227</eissn><coden>ECMADL</coden><abstract>Artificial Neural Networks are proposed to model and predict electricity consumption of Turkey. Multi layer perceptron with backpropagation training algorithm is used as the neural network topology. Tangent-sigmoid and pure-linear transfer functions are selected in the hidden and output layer processing elements, respectively. These input–output network models are a result of relationships that exist among electricity consumption and several other socioeconomic variables. Electricity consumption is modeled as a function of economic indicators such as population, gross national product, imports and exports. It is also modeled using export–import ratio and time input only. Performance comparison among different models is made based on absolute and percentage mean square error. Electricity consumption of Turkey is predicted until 2027 using data from 1975 to 2006 along with other economic indicators. The results show that electricity consumption can be modeled using Artificial Neural Networks, and the models can be used to predict future electricity consumption.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.enconman.2009.06.016</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0196-8904
ispartof Energy conversion and management, 2009-11, Vol.50 (11), p.2719-2727
issn 0196-8904
1879-2227
language eng
recordid cdi_proquest_miscellaneous_34877244
source Elsevier:Jisc Collections:Elsevier Read and Publish Agreement 2022-2024:Freedom Collection (Reading list)
subjects Applied sciences
Artificial Neural Networks
Economic data
Electric energy
Electricity consumption
Energy
Energy economics
Exact sciences and technology
General, economic and professional studies
Methodology. Modelling
Turkey
title Modeling and prediction of Turkey’s electricity consumption using Artificial Neural Networks
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T20%3A40%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20and%20prediction%20of%20Turkey%E2%80%99s%20electricity%20consumption%20using%20Artificial%20Neural%20Networks&rft.jtitle=Energy%20conversion%20and%20management&rft.au=Kavaklioglu,%20Kadir&rft.date=2009-11-01&rft.volume=50&rft.issue=11&rft.spage=2719&rft.epage=2727&rft.pages=2719-2727&rft.issn=0196-8904&rft.eissn=1879-2227&rft.coden=ECMADL&rft_id=info:doi/10.1016/j.enconman.2009.06.016&rft_dat=%3Cproquest_cross%3E21085425%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c404t-175feced4d7374a25fdad9e90a41b2a15e89d84871841f50fbe37e556d67fe873%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=21085425&rft_id=info:pmid/&rfr_iscdi=true