Loading…
Modeling and prediction of Turkey’s electricity consumption using Artificial Neural Networks
Artificial Neural Networks are proposed to model and predict electricity consumption of Turkey. Multi layer perceptron with backpropagation training algorithm is used as the neural network topology. Tangent-sigmoid and pure-linear transfer functions are selected in the hidden and output layer proces...
Saved in:
Published in: | Energy conversion and management 2009-11, Vol.50 (11), p.2719-2727 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c404t-175feced4d7374a25fdad9e90a41b2a15e89d84871841f50fbe37e556d67fe873 |
---|---|
cites | cdi_FETCH-LOGICAL-c404t-175feced4d7374a25fdad9e90a41b2a15e89d84871841f50fbe37e556d67fe873 |
container_end_page | 2727 |
container_issue | 11 |
container_start_page | 2719 |
container_title | Energy conversion and management |
container_volume | 50 |
creator | Kavaklioglu, Kadir Ceylan, Halim Ozturk, Harun Kemal Canyurt, Olcay Ersel |
description | Artificial Neural Networks are proposed to model and predict electricity consumption of Turkey. Multi layer perceptron with backpropagation training algorithm is used as the neural network topology. Tangent-sigmoid and pure-linear transfer functions are selected in the hidden and output layer processing elements, respectively. These input–output network models are a result of relationships that exist among electricity consumption and several other socioeconomic variables. Electricity consumption is modeled as a function of economic indicators such as population, gross national product, imports and exports. It is also modeled using export–import ratio and time input only. Performance comparison among different models is made based on absolute and percentage mean square error. Electricity consumption of Turkey is predicted until 2027 using data from 1975 to 2006 along with other economic indicators. The results show that electricity consumption can be modeled using Artificial Neural Networks, and the models can be used to predict future electricity consumption. |
doi_str_mv | 10.1016/j.enconman.2009.06.016 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_34877244</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0196890409002404</els_id><sourcerecordid>21085425</sourcerecordid><originalsourceid>FETCH-LOGICAL-c404t-175feced4d7374a25fdad9e90a41b2a15e89d84871841f50fbe37e556d67fe873</originalsourceid><addsrcrecordid>eNqFkU1uFDEQRq0IpAyBK6DehF03Zbf_ekcUQYIUwiZssRy7HHnS0x7sbtDsuEaux0nwZALbrEoqv68-6ZmQtxQ6ClS-X3c4uTRt7NQxgKED2dX1EVlRrYaWMaZekBXQQbZ6AH5MXpWyBoBegFyR71-SxzFOd42dfLPN6KObY5qaFJqbJd_j7s_vh9LgiG7O0cV519Susmy2j9RS9tGzPMdQH-3YXOOSH8f8K-X78pq8DHYs-OZpnpBvnz7enF-2V18vPp-fXbWOA59bqkRAh5571StumQje-gEHsJzeMksF6sFrrhXVnAYB4RZ7hUJIL1VArfoT8u5wd5vTjwXLbDaxOBxHO2FaiulrVjHOnwUZBS04ExWUB9DlVErGYLY5bmzeGQpm792szT_vZu_dgDR1XYOnTw22ODuGbCcXy_80o0OvpdSV-3DgsHr5GTGb4mK9WH8gV9nGp_hc1V_7vJ8b</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>21085425</pqid></control><display><type>article</type><title>Modeling and prediction of Turkey’s electricity consumption using Artificial Neural Networks</title><source>Elsevier:Jisc Collections:Elsevier Read and Publish Agreement 2022-2024:Freedom Collection (Reading list)</source><creator>Kavaklioglu, Kadir ; Ceylan, Halim ; Ozturk, Harun Kemal ; Canyurt, Olcay Ersel</creator><creatorcontrib>Kavaklioglu, Kadir ; Ceylan, Halim ; Ozturk, Harun Kemal ; Canyurt, Olcay Ersel</creatorcontrib><description>Artificial Neural Networks are proposed to model and predict electricity consumption of Turkey. Multi layer perceptron with backpropagation training algorithm is used as the neural network topology. Tangent-sigmoid and pure-linear transfer functions are selected in the hidden and output layer processing elements, respectively. These input–output network models are a result of relationships that exist among electricity consumption and several other socioeconomic variables. Electricity consumption is modeled as a function of economic indicators such as population, gross national product, imports and exports. It is also modeled using export–import ratio and time input only. Performance comparison among different models is made based on absolute and percentage mean square error. Electricity consumption of Turkey is predicted until 2027 using data from 1975 to 2006 along with other economic indicators. The results show that electricity consumption can be modeled using Artificial Neural Networks, and the models can be used to predict future electricity consumption.</description><identifier>ISSN: 0196-8904</identifier><identifier>EISSN: 1879-2227</identifier><identifier>DOI: 10.1016/j.enconman.2009.06.016</identifier><identifier>CODEN: ECMADL</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Applied sciences ; Artificial Neural Networks ; Economic data ; Electric energy ; Electricity consumption ; Energy ; Energy economics ; Exact sciences and technology ; General, economic and professional studies ; Methodology. Modelling ; Turkey</subject><ispartof>Energy conversion and management, 2009-11, Vol.50 (11), p.2719-2727</ispartof><rights>2009 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c404t-175feced4d7374a25fdad9e90a41b2a15e89d84871841f50fbe37e556d67fe873</citedby><cites>FETCH-LOGICAL-c404t-175feced4d7374a25fdad9e90a41b2a15e89d84871841f50fbe37e556d67fe873</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21938668$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Kavaklioglu, Kadir</creatorcontrib><creatorcontrib>Ceylan, Halim</creatorcontrib><creatorcontrib>Ozturk, Harun Kemal</creatorcontrib><creatorcontrib>Canyurt, Olcay Ersel</creatorcontrib><title>Modeling and prediction of Turkey’s electricity consumption using Artificial Neural Networks</title><title>Energy conversion and management</title><description>Artificial Neural Networks are proposed to model and predict electricity consumption of Turkey. Multi layer perceptron with backpropagation training algorithm is used as the neural network topology. Tangent-sigmoid and pure-linear transfer functions are selected in the hidden and output layer processing elements, respectively. These input–output network models are a result of relationships that exist among electricity consumption and several other socioeconomic variables. Electricity consumption is modeled as a function of economic indicators such as population, gross national product, imports and exports. It is also modeled using export–import ratio and time input only. Performance comparison among different models is made based on absolute and percentage mean square error. Electricity consumption of Turkey is predicted until 2027 using data from 1975 to 2006 along with other economic indicators. The results show that electricity consumption can be modeled using Artificial Neural Networks, and the models can be used to predict future electricity consumption.</description><subject>Applied sciences</subject><subject>Artificial Neural Networks</subject><subject>Economic data</subject><subject>Electric energy</subject><subject>Electricity consumption</subject><subject>Energy</subject><subject>Energy economics</subject><subject>Exact sciences and technology</subject><subject>General, economic and professional studies</subject><subject>Methodology. Modelling</subject><subject>Turkey</subject><issn>0196-8904</issn><issn>1879-2227</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNqFkU1uFDEQRq0IpAyBK6DehF03Zbf_ekcUQYIUwiZssRy7HHnS0x7sbtDsuEaux0nwZALbrEoqv68-6ZmQtxQ6ClS-X3c4uTRt7NQxgKED2dX1EVlRrYaWMaZekBXQQbZ6AH5MXpWyBoBegFyR71-SxzFOd42dfLPN6KObY5qaFJqbJd_j7s_vh9LgiG7O0cV519Susmy2j9RS9tGzPMdQH-3YXOOSH8f8K-X78pq8DHYs-OZpnpBvnz7enF-2V18vPp-fXbWOA59bqkRAh5571StumQje-gEHsJzeMksF6sFrrhXVnAYB4RZ7hUJIL1VArfoT8u5wd5vTjwXLbDaxOBxHO2FaiulrVjHOnwUZBS04ExWUB9DlVErGYLY5bmzeGQpm792szT_vZu_dgDR1XYOnTw22ODuGbCcXy_80o0OvpdSV-3DgsHr5GTGb4mK9WH8gV9nGp_hc1V_7vJ8b</recordid><startdate>20091101</startdate><enddate>20091101</enddate><creator>Kavaklioglu, Kadir</creator><creator>Ceylan, Halim</creator><creator>Ozturk, Harun Kemal</creator><creator>Canyurt, Olcay Ersel</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>C1K</scope><scope>SOI</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope></search><sort><creationdate>20091101</creationdate><title>Modeling and prediction of Turkey’s electricity consumption using Artificial Neural Networks</title><author>Kavaklioglu, Kadir ; Ceylan, Halim ; Ozturk, Harun Kemal ; Canyurt, Olcay Ersel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c404t-175feced4d7374a25fdad9e90a41b2a15e89d84871841f50fbe37e556d67fe873</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Applied sciences</topic><topic>Artificial Neural Networks</topic><topic>Economic data</topic><topic>Electric energy</topic><topic>Electricity consumption</topic><topic>Energy</topic><topic>Energy economics</topic><topic>Exact sciences and technology</topic><topic>General, economic and professional studies</topic><topic>Methodology. Modelling</topic><topic>Turkey</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kavaklioglu, Kadir</creatorcontrib><creatorcontrib>Ceylan, Halim</creatorcontrib><creatorcontrib>Ozturk, Harun Kemal</creatorcontrib><creatorcontrib>Canyurt, Olcay Ersel</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Environment Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><jtitle>Energy conversion and management</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kavaklioglu, Kadir</au><au>Ceylan, Halim</au><au>Ozturk, Harun Kemal</au><au>Canyurt, Olcay Ersel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling and prediction of Turkey’s electricity consumption using Artificial Neural Networks</atitle><jtitle>Energy conversion and management</jtitle><date>2009-11-01</date><risdate>2009</risdate><volume>50</volume><issue>11</issue><spage>2719</spage><epage>2727</epage><pages>2719-2727</pages><issn>0196-8904</issn><eissn>1879-2227</eissn><coden>ECMADL</coden><abstract>Artificial Neural Networks are proposed to model and predict electricity consumption of Turkey. Multi layer perceptron with backpropagation training algorithm is used as the neural network topology. Tangent-sigmoid and pure-linear transfer functions are selected in the hidden and output layer processing elements, respectively. These input–output network models are a result of relationships that exist among electricity consumption and several other socioeconomic variables. Electricity consumption is modeled as a function of economic indicators such as population, gross national product, imports and exports. It is also modeled using export–import ratio and time input only. Performance comparison among different models is made based on absolute and percentage mean square error. Electricity consumption of Turkey is predicted until 2027 using data from 1975 to 2006 along with other economic indicators. The results show that electricity consumption can be modeled using Artificial Neural Networks, and the models can be used to predict future electricity consumption.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.enconman.2009.06.016</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0196-8904 |
ispartof | Energy conversion and management, 2009-11, Vol.50 (11), p.2719-2727 |
issn | 0196-8904 1879-2227 |
language | eng |
recordid | cdi_proquest_miscellaneous_34877244 |
source | Elsevier:Jisc Collections:Elsevier Read and Publish Agreement 2022-2024:Freedom Collection (Reading list) |
subjects | Applied sciences Artificial Neural Networks Economic data Electric energy Electricity consumption Energy Energy economics Exact sciences and technology General, economic and professional studies Methodology. Modelling Turkey |
title | Modeling and prediction of Turkey’s electricity consumption using Artificial Neural Networks |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T20%3A40%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20and%20prediction%20of%20Turkey%E2%80%99s%20electricity%20consumption%20using%20Artificial%20Neural%20Networks&rft.jtitle=Energy%20conversion%20and%20management&rft.au=Kavaklioglu,%20Kadir&rft.date=2009-11-01&rft.volume=50&rft.issue=11&rft.spage=2719&rft.epage=2727&rft.pages=2719-2727&rft.issn=0196-8904&rft.eissn=1879-2227&rft.coden=ECMADL&rft_id=info:doi/10.1016/j.enconman.2009.06.016&rft_dat=%3Cproquest_cross%3E21085425%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c404t-175feced4d7374a25fdad9e90a41b2a15e89d84871841f50fbe37e556d67fe873%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=21085425&rft_id=info:pmid/&rfr_iscdi=true |