Loading…

Elastic organic–inorganic hybrid aerogels and xerogels

Novel aerogels and xerogels with methylsilsesquioxane (MSQ, CH 3 SiO 1.5 ) networks have been prepared by a modified sol–gel process using surfactant and urea as a phase-separation inhibitor and as an accelerator for the condensation reaction, respectively. Optimized aerogels dried under a supercrit...

Full description

Saved in:
Bibliographic Details
Published in:Journal of sol-gel science and technology 2008-11, Vol.48 (1-2), p.172-181
Main Authors: Kanamori, Kazuyoshi, Aizawa, Mamoru, Nakanishi, Kazuki, Hanada, Teiichi
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c443t-4f0f38c9607d05455dd5123560adb405403051edef443a0e180ea55407b1ec143
cites cdi_FETCH-LOGICAL-c443t-4f0f38c9607d05455dd5123560adb405403051edef443a0e180ea55407b1ec143
container_end_page 181
container_issue 1-2
container_start_page 172
container_title Journal of sol-gel science and technology
container_volume 48
creator Kanamori, Kazuyoshi
Aizawa, Mamoru
Nakanishi, Kazuki
Hanada, Teiichi
description Novel aerogels and xerogels with methylsilsesquioxane (MSQ, CH 3 SiO 1.5 ) networks have been prepared by a modified sol–gel process using surfactant and urea as a phase-separation inhibitor and as an accelerator for the condensation reaction, respectively. Optimized aerogels dried under a supercritical condition not only showed the similar properties as conventional pure silica aerogels such as high transparency and porosity etc, but also demonstrated outstanding mechanical strength against compression; the aerogel drastically shrank upon loading and then recovered when unloaded, which is called a “spring-back” behavior. On ambient pressure drying, the wet gel also exhibited the similar response against compression stress originated from the capillary pressure, and thus xerogels with the comparative structure and properties to those of corresponding aerogels have also been obtained. This unusual mechanical behavior is attributed to the trifunctional flexible networks of MSQ, low silanol concentration which prevents the irreversible shrinkage, and high concentration of a hydrophobic methyl group directly attached to every silicon atom which helps re-expansion after the temporal shrinkage.
doi_str_mv 10.1007/s10971-008-1756-6
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_34877669</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2259559637</sourcerecordid><originalsourceid>FETCH-LOGICAL-c443t-4f0f38c9607d05455dd5123560adb405403051edef443a0e180ea55407b1ec143</originalsourceid><addsrcrecordid>eNp1kMtKAzEUhoMoWKsP4G5AdBc9mVzOZCmlXqDgRtchzWTqlOlMTVqwO9_BN_RJTJlBQXB1bt_5z-En5JzBNQPAm8hAI6MABWUoFVUHZMQkcioKoQ7JCHReUEDAY3IS4xIApGA4IsW0sXFTu6wLC9vW7uvjs26HPHvdzUNdZtaHbuGbmNm2zN6H4pQcVbaJ_myIY_JyN32ePNDZ0_3j5HZGnRB8Q0UFFS-cVoBlOillWUqWc6nAlnOROsBBMl_6KuEWPCvAW5naOGfeMcHH5KrXXYfubevjxqzq6HzT2NZ322i4KBCV0gm8-AMuu21o028mz6WWUiuOiWI95UIXY_CVWYd6ZcPOMDB7J03vpElOmr2TRqWdy0HZRmebKtjW1fFnMQfUiDJPXN5zMY3ahQ-_H_wv_g12w4IF</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2259559637</pqid></control><display><type>article</type><title>Elastic organic–inorganic hybrid aerogels and xerogels</title><source>Springer Nature</source><creator>Kanamori, Kazuyoshi ; Aizawa, Mamoru ; Nakanishi, Kazuki ; Hanada, Teiichi</creator><creatorcontrib>Kanamori, Kazuyoshi ; Aizawa, Mamoru ; Nakanishi, Kazuki ; Hanada, Teiichi</creatorcontrib><description>Novel aerogels and xerogels with methylsilsesquioxane (MSQ, CH 3 SiO 1.5 ) networks have been prepared by a modified sol–gel process using surfactant and urea as a phase-separation inhibitor and as an accelerator for the condensation reaction, respectively. Optimized aerogels dried under a supercritical condition not only showed the similar properties as conventional pure silica aerogels such as high transparency and porosity etc, but also demonstrated outstanding mechanical strength against compression; the aerogel drastically shrank upon loading and then recovered when unloaded, which is called a “spring-back” behavior. On ambient pressure drying, the wet gel also exhibited the similar response against compression stress originated from the capillary pressure, and thus xerogels with the comparative structure and properties to those of corresponding aerogels have also been obtained. This unusual mechanical behavior is attributed to the trifunctional flexible networks of MSQ, low silanol concentration which prevents the irreversible shrinkage, and high concentration of a hydrophobic methyl group directly attached to every silicon atom which helps re-expansion after the temporal shrinkage.</description><identifier>ISSN: 0928-0707</identifier><identifier>EISSN: 1573-4846</identifier><identifier>DOI: 10.1007/s10971-008-1756-6</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Capillary pressure ; Ceramics ; Chemistry ; Chemistry and Materials Science ; Colloidal gels. Colloidal sols ; Colloidal state and disperse state ; Composites ; Compressive strength ; Exact sciences and technology ; General and physical chemistry ; Glass ; Inorganic Chemistry ; Materials Science ; Mechanical properties ; Nanotechnology ; Natural Materials ; Optical and Electronic Materials ; Original Paper ; Porosity ; Porous materials ; Pressure ; Shrinkage ; Silica aerogels ; Silicon dioxide ; Sol-gel processes ; Xerogels</subject><ispartof>Journal of sol-gel science and technology, 2008-11, Vol.48 (1-2), p.172-181</ispartof><rights>Springer Science+Business Media, LLC 2008</rights><rights>2009 INIST-CNRS</rights><rights>Journal of Sol-Gel Science and Technology is a copyright of Springer, (2008). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c443t-4f0f38c9607d05455dd5123560adb405403051edef443a0e180ea55407b1ec143</citedby><cites>FETCH-LOGICAL-c443t-4f0f38c9607d05455dd5123560adb405403051edef443a0e180ea55407b1ec143</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,780,784,789,790,23930,23931,25140,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=20797752$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Kanamori, Kazuyoshi</creatorcontrib><creatorcontrib>Aizawa, Mamoru</creatorcontrib><creatorcontrib>Nakanishi, Kazuki</creatorcontrib><creatorcontrib>Hanada, Teiichi</creatorcontrib><title>Elastic organic–inorganic hybrid aerogels and xerogels</title><title>Journal of sol-gel science and technology</title><addtitle>J Sol-Gel Sci Technol</addtitle><description>Novel aerogels and xerogels with methylsilsesquioxane (MSQ, CH 3 SiO 1.5 ) networks have been prepared by a modified sol–gel process using surfactant and urea as a phase-separation inhibitor and as an accelerator for the condensation reaction, respectively. Optimized aerogels dried under a supercritical condition not only showed the similar properties as conventional pure silica aerogels such as high transparency and porosity etc, but also demonstrated outstanding mechanical strength against compression; the aerogel drastically shrank upon loading and then recovered when unloaded, which is called a “spring-back” behavior. On ambient pressure drying, the wet gel also exhibited the similar response against compression stress originated from the capillary pressure, and thus xerogels with the comparative structure and properties to those of corresponding aerogels have also been obtained. This unusual mechanical behavior is attributed to the trifunctional flexible networks of MSQ, low silanol concentration which prevents the irreversible shrinkage, and high concentration of a hydrophobic methyl group directly attached to every silicon atom which helps re-expansion after the temporal shrinkage.</description><subject>Capillary pressure</subject><subject>Ceramics</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Colloidal gels. Colloidal sols</subject><subject>Colloidal state and disperse state</subject><subject>Composites</subject><subject>Compressive strength</subject><subject>Exact sciences and technology</subject><subject>General and physical chemistry</subject><subject>Glass</subject><subject>Inorganic Chemistry</subject><subject>Materials Science</subject><subject>Mechanical properties</subject><subject>Nanotechnology</subject><subject>Natural Materials</subject><subject>Optical and Electronic Materials</subject><subject>Original Paper</subject><subject>Porosity</subject><subject>Porous materials</subject><subject>Pressure</subject><subject>Shrinkage</subject><subject>Silica aerogels</subject><subject>Silicon dioxide</subject><subject>Sol-gel processes</subject><subject>Xerogels</subject><issn>0928-0707</issn><issn>1573-4846</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNp1kMtKAzEUhoMoWKsP4G5AdBc9mVzOZCmlXqDgRtchzWTqlOlMTVqwO9_BN_RJTJlBQXB1bt_5z-En5JzBNQPAm8hAI6MABWUoFVUHZMQkcioKoQ7JCHReUEDAY3IS4xIApGA4IsW0sXFTu6wLC9vW7uvjs26HPHvdzUNdZtaHbuGbmNm2zN6H4pQcVbaJ_myIY_JyN32ePNDZ0_3j5HZGnRB8Q0UFFS-cVoBlOillWUqWc6nAlnOROsBBMl_6KuEWPCvAW5naOGfeMcHH5KrXXYfubevjxqzq6HzT2NZ322i4KBCV0gm8-AMuu21o028mz6WWUiuOiWI95UIXY_CVWYd6ZcPOMDB7J03vpElOmr2TRqWdy0HZRmebKtjW1fFnMQfUiDJPXN5zMY3ahQ-_H_wv_g12w4IF</recordid><startdate>20081101</startdate><enddate>20081101</enddate><creator>Kanamori, Kazuyoshi</creator><creator>Aizawa, Mamoru</creator><creator>Nakanishi, Kazuki</creator><creator>Hanada, Teiichi</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20081101</creationdate><title>Elastic organic–inorganic hybrid aerogels and xerogels</title><author>Kanamori, Kazuyoshi ; Aizawa, Mamoru ; Nakanishi, Kazuki ; Hanada, Teiichi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c443t-4f0f38c9607d05455dd5123560adb405403051edef443a0e180ea55407b1ec143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Capillary pressure</topic><topic>Ceramics</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Colloidal gels. Colloidal sols</topic><topic>Colloidal state and disperse state</topic><topic>Composites</topic><topic>Compressive strength</topic><topic>Exact sciences and technology</topic><topic>General and physical chemistry</topic><topic>Glass</topic><topic>Inorganic Chemistry</topic><topic>Materials Science</topic><topic>Mechanical properties</topic><topic>Nanotechnology</topic><topic>Natural Materials</topic><topic>Optical and Electronic Materials</topic><topic>Original Paper</topic><topic>Porosity</topic><topic>Porous materials</topic><topic>Pressure</topic><topic>Shrinkage</topic><topic>Silica aerogels</topic><topic>Silicon dioxide</topic><topic>Sol-gel processes</topic><topic>Xerogels</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kanamori, Kazuyoshi</creatorcontrib><creatorcontrib>Aizawa, Mamoru</creatorcontrib><creatorcontrib>Nakanishi, Kazuki</creatorcontrib><creatorcontrib>Hanada, Teiichi</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of sol-gel science and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kanamori, Kazuyoshi</au><au>Aizawa, Mamoru</au><au>Nakanishi, Kazuki</au><au>Hanada, Teiichi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Elastic organic–inorganic hybrid aerogels and xerogels</atitle><jtitle>Journal of sol-gel science and technology</jtitle><stitle>J Sol-Gel Sci Technol</stitle><date>2008-11-01</date><risdate>2008</risdate><volume>48</volume><issue>1-2</issue><spage>172</spage><epage>181</epage><pages>172-181</pages><issn>0928-0707</issn><eissn>1573-4846</eissn><abstract>Novel aerogels and xerogels with methylsilsesquioxane (MSQ, CH 3 SiO 1.5 ) networks have been prepared by a modified sol–gel process using surfactant and urea as a phase-separation inhibitor and as an accelerator for the condensation reaction, respectively. Optimized aerogels dried under a supercritical condition not only showed the similar properties as conventional pure silica aerogels such as high transparency and porosity etc, but also demonstrated outstanding mechanical strength against compression; the aerogel drastically shrank upon loading and then recovered when unloaded, which is called a “spring-back” behavior. On ambient pressure drying, the wet gel also exhibited the similar response against compression stress originated from the capillary pressure, and thus xerogels with the comparative structure and properties to those of corresponding aerogels have also been obtained. This unusual mechanical behavior is attributed to the trifunctional flexible networks of MSQ, low silanol concentration which prevents the irreversible shrinkage, and high concentration of a hydrophobic methyl group directly attached to every silicon atom which helps re-expansion after the temporal shrinkage.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s10971-008-1756-6</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0928-0707
ispartof Journal of sol-gel science and technology, 2008-11, Vol.48 (1-2), p.172-181
issn 0928-0707
1573-4846
language eng
recordid cdi_proquest_miscellaneous_34877669
source Springer Nature
subjects Capillary pressure
Ceramics
Chemistry
Chemistry and Materials Science
Colloidal gels. Colloidal sols
Colloidal state and disperse state
Composites
Compressive strength
Exact sciences and technology
General and physical chemistry
Glass
Inorganic Chemistry
Materials Science
Mechanical properties
Nanotechnology
Natural Materials
Optical and Electronic Materials
Original Paper
Porosity
Porous materials
Pressure
Shrinkage
Silica aerogels
Silicon dioxide
Sol-gel processes
Xerogels
title Elastic organic–inorganic hybrid aerogels and xerogels
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T16%3A44%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Elastic%20organic%E2%80%93inorganic%20hybrid%20aerogels%20and%20xerogels&rft.jtitle=Journal%20of%20sol-gel%20science%20and%20technology&rft.au=Kanamori,%20Kazuyoshi&rft.date=2008-11-01&rft.volume=48&rft.issue=1-2&rft.spage=172&rft.epage=181&rft.pages=172-181&rft.issn=0928-0707&rft.eissn=1573-4846&rft_id=info:doi/10.1007/s10971-008-1756-6&rft_dat=%3Cproquest_cross%3E2259559637%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c443t-4f0f38c9607d05455dd5123560adb405403051edef443a0e180ea55407b1ec143%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2259559637&rft_id=info:pmid/&rfr_iscdi=true