Loading…
Elastic organic–inorganic hybrid aerogels and xerogels
Novel aerogels and xerogels with methylsilsesquioxane (MSQ, CH 3 SiO 1.5 ) networks have been prepared by a modified sol–gel process using surfactant and urea as a phase-separation inhibitor and as an accelerator for the condensation reaction, respectively. Optimized aerogels dried under a supercrit...
Saved in:
Published in: | Journal of sol-gel science and technology 2008-11, Vol.48 (1-2), p.172-181 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c443t-4f0f38c9607d05455dd5123560adb405403051edef443a0e180ea55407b1ec143 |
---|---|
cites | cdi_FETCH-LOGICAL-c443t-4f0f38c9607d05455dd5123560adb405403051edef443a0e180ea55407b1ec143 |
container_end_page | 181 |
container_issue | 1-2 |
container_start_page | 172 |
container_title | Journal of sol-gel science and technology |
container_volume | 48 |
creator | Kanamori, Kazuyoshi Aizawa, Mamoru Nakanishi, Kazuki Hanada, Teiichi |
description | Novel aerogels and xerogels with methylsilsesquioxane (MSQ, CH
3
SiO
1.5
) networks have been prepared by a modified sol–gel process using surfactant and urea as a phase-separation inhibitor and as an accelerator for the condensation reaction, respectively. Optimized aerogels dried under a supercritical condition not only showed the similar properties as conventional pure silica aerogels such as high transparency and porosity etc, but also demonstrated outstanding mechanical strength against compression; the aerogel drastically shrank upon loading and then recovered when unloaded, which is called a “spring-back” behavior. On ambient pressure drying, the wet gel also exhibited the similar response against compression stress originated from the capillary pressure, and thus xerogels with the comparative structure and properties to those of corresponding aerogels have also been obtained. This unusual mechanical behavior is attributed to the trifunctional flexible networks of MSQ, low silanol concentration which prevents the irreversible shrinkage, and high concentration of a hydrophobic methyl group directly attached to every silicon atom which helps re-expansion after the temporal shrinkage. |
doi_str_mv | 10.1007/s10971-008-1756-6 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_34877669</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2259559637</sourcerecordid><originalsourceid>FETCH-LOGICAL-c443t-4f0f38c9607d05455dd5123560adb405403051edef443a0e180ea55407b1ec143</originalsourceid><addsrcrecordid>eNp1kMtKAzEUhoMoWKsP4G5AdBc9mVzOZCmlXqDgRtchzWTqlOlMTVqwO9_BN_RJTJlBQXB1bt_5z-En5JzBNQPAm8hAI6MABWUoFVUHZMQkcioKoQ7JCHReUEDAY3IS4xIApGA4IsW0sXFTu6wLC9vW7uvjs26HPHvdzUNdZtaHbuGbmNm2zN6H4pQcVbaJ_myIY_JyN32ePNDZ0_3j5HZGnRB8Q0UFFS-cVoBlOillWUqWc6nAlnOROsBBMl_6KuEWPCvAW5naOGfeMcHH5KrXXYfubevjxqzq6HzT2NZ322i4KBCV0gm8-AMuu21o028mz6WWUiuOiWI95UIXY_CVWYd6ZcPOMDB7J03vpElOmr2TRqWdy0HZRmebKtjW1fFnMQfUiDJPXN5zMY3ahQ-_H_wv_g12w4IF</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2259559637</pqid></control><display><type>article</type><title>Elastic organic–inorganic hybrid aerogels and xerogels</title><source>Springer Nature</source><creator>Kanamori, Kazuyoshi ; Aizawa, Mamoru ; Nakanishi, Kazuki ; Hanada, Teiichi</creator><creatorcontrib>Kanamori, Kazuyoshi ; Aizawa, Mamoru ; Nakanishi, Kazuki ; Hanada, Teiichi</creatorcontrib><description>Novel aerogels and xerogels with methylsilsesquioxane (MSQ, CH
3
SiO
1.5
) networks have been prepared by a modified sol–gel process using surfactant and urea as a phase-separation inhibitor and as an accelerator for the condensation reaction, respectively. Optimized aerogels dried under a supercritical condition not only showed the similar properties as conventional pure silica aerogels such as high transparency and porosity etc, but also demonstrated outstanding mechanical strength against compression; the aerogel drastically shrank upon loading and then recovered when unloaded, which is called a “spring-back” behavior. On ambient pressure drying, the wet gel also exhibited the similar response against compression stress originated from the capillary pressure, and thus xerogels with the comparative structure and properties to those of corresponding aerogels have also been obtained. This unusual mechanical behavior is attributed to the trifunctional flexible networks of MSQ, low silanol concentration which prevents the irreversible shrinkage, and high concentration of a hydrophobic methyl group directly attached to every silicon atom which helps re-expansion after the temporal shrinkage.</description><identifier>ISSN: 0928-0707</identifier><identifier>EISSN: 1573-4846</identifier><identifier>DOI: 10.1007/s10971-008-1756-6</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Capillary pressure ; Ceramics ; Chemistry ; Chemistry and Materials Science ; Colloidal gels. Colloidal sols ; Colloidal state and disperse state ; Composites ; Compressive strength ; Exact sciences and technology ; General and physical chemistry ; Glass ; Inorganic Chemistry ; Materials Science ; Mechanical properties ; Nanotechnology ; Natural Materials ; Optical and Electronic Materials ; Original Paper ; Porosity ; Porous materials ; Pressure ; Shrinkage ; Silica aerogels ; Silicon dioxide ; Sol-gel processes ; Xerogels</subject><ispartof>Journal of sol-gel science and technology, 2008-11, Vol.48 (1-2), p.172-181</ispartof><rights>Springer Science+Business Media, LLC 2008</rights><rights>2009 INIST-CNRS</rights><rights>Journal of Sol-Gel Science and Technology is a copyright of Springer, (2008). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c443t-4f0f38c9607d05455dd5123560adb405403051edef443a0e180ea55407b1ec143</citedby><cites>FETCH-LOGICAL-c443t-4f0f38c9607d05455dd5123560adb405403051edef443a0e180ea55407b1ec143</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,780,784,789,790,23930,23931,25140,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20797752$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Kanamori, Kazuyoshi</creatorcontrib><creatorcontrib>Aizawa, Mamoru</creatorcontrib><creatorcontrib>Nakanishi, Kazuki</creatorcontrib><creatorcontrib>Hanada, Teiichi</creatorcontrib><title>Elastic organic–inorganic hybrid aerogels and xerogels</title><title>Journal of sol-gel science and technology</title><addtitle>J Sol-Gel Sci Technol</addtitle><description>Novel aerogels and xerogels with methylsilsesquioxane (MSQ, CH
3
SiO
1.5
) networks have been prepared by a modified sol–gel process using surfactant and urea as a phase-separation inhibitor and as an accelerator for the condensation reaction, respectively. Optimized aerogels dried under a supercritical condition not only showed the similar properties as conventional pure silica aerogels such as high transparency and porosity etc, but also demonstrated outstanding mechanical strength against compression; the aerogel drastically shrank upon loading and then recovered when unloaded, which is called a “spring-back” behavior. On ambient pressure drying, the wet gel also exhibited the similar response against compression stress originated from the capillary pressure, and thus xerogels with the comparative structure and properties to those of corresponding aerogels have also been obtained. This unusual mechanical behavior is attributed to the trifunctional flexible networks of MSQ, low silanol concentration which prevents the irreversible shrinkage, and high concentration of a hydrophobic methyl group directly attached to every silicon atom which helps re-expansion after the temporal shrinkage.</description><subject>Capillary pressure</subject><subject>Ceramics</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Colloidal gels. Colloidal sols</subject><subject>Colloidal state and disperse state</subject><subject>Composites</subject><subject>Compressive strength</subject><subject>Exact sciences and technology</subject><subject>General and physical chemistry</subject><subject>Glass</subject><subject>Inorganic Chemistry</subject><subject>Materials Science</subject><subject>Mechanical properties</subject><subject>Nanotechnology</subject><subject>Natural Materials</subject><subject>Optical and Electronic Materials</subject><subject>Original Paper</subject><subject>Porosity</subject><subject>Porous materials</subject><subject>Pressure</subject><subject>Shrinkage</subject><subject>Silica aerogels</subject><subject>Silicon dioxide</subject><subject>Sol-gel processes</subject><subject>Xerogels</subject><issn>0928-0707</issn><issn>1573-4846</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNp1kMtKAzEUhoMoWKsP4G5AdBc9mVzOZCmlXqDgRtchzWTqlOlMTVqwO9_BN_RJTJlBQXB1bt_5z-En5JzBNQPAm8hAI6MABWUoFVUHZMQkcioKoQ7JCHReUEDAY3IS4xIApGA4IsW0sXFTu6wLC9vW7uvjs26HPHvdzUNdZtaHbuGbmNm2zN6H4pQcVbaJ_myIY_JyN32ePNDZ0_3j5HZGnRB8Q0UFFS-cVoBlOillWUqWc6nAlnOROsBBMl_6KuEWPCvAW5naOGfeMcHH5KrXXYfubevjxqzq6HzT2NZ322i4KBCV0gm8-AMuu21o028mz6WWUiuOiWI95UIXY_CVWYd6ZcPOMDB7J03vpElOmr2TRqWdy0HZRmebKtjW1fFnMQfUiDJPXN5zMY3ahQ-_H_wv_g12w4IF</recordid><startdate>20081101</startdate><enddate>20081101</enddate><creator>Kanamori, Kazuyoshi</creator><creator>Aizawa, Mamoru</creator><creator>Nakanishi, Kazuki</creator><creator>Hanada, Teiichi</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20081101</creationdate><title>Elastic organic–inorganic hybrid aerogels and xerogels</title><author>Kanamori, Kazuyoshi ; Aizawa, Mamoru ; Nakanishi, Kazuki ; Hanada, Teiichi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c443t-4f0f38c9607d05455dd5123560adb405403051edef443a0e180ea55407b1ec143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Capillary pressure</topic><topic>Ceramics</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Colloidal gels. Colloidal sols</topic><topic>Colloidal state and disperse state</topic><topic>Composites</topic><topic>Compressive strength</topic><topic>Exact sciences and technology</topic><topic>General and physical chemistry</topic><topic>Glass</topic><topic>Inorganic Chemistry</topic><topic>Materials Science</topic><topic>Mechanical properties</topic><topic>Nanotechnology</topic><topic>Natural Materials</topic><topic>Optical and Electronic Materials</topic><topic>Original Paper</topic><topic>Porosity</topic><topic>Porous materials</topic><topic>Pressure</topic><topic>Shrinkage</topic><topic>Silica aerogels</topic><topic>Silicon dioxide</topic><topic>Sol-gel processes</topic><topic>Xerogels</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kanamori, Kazuyoshi</creatorcontrib><creatorcontrib>Aizawa, Mamoru</creatorcontrib><creatorcontrib>Nakanishi, Kazuki</creatorcontrib><creatorcontrib>Hanada, Teiichi</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of sol-gel science and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kanamori, Kazuyoshi</au><au>Aizawa, Mamoru</au><au>Nakanishi, Kazuki</au><au>Hanada, Teiichi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Elastic organic–inorganic hybrid aerogels and xerogels</atitle><jtitle>Journal of sol-gel science and technology</jtitle><stitle>J Sol-Gel Sci Technol</stitle><date>2008-11-01</date><risdate>2008</risdate><volume>48</volume><issue>1-2</issue><spage>172</spage><epage>181</epage><pages>172-181</pages><issn>0928-0707</issn><eissn>1573-4846</eissn><abstract>Novel aerogels and xerogels with methylsilsesquioxane (MSQ, CH
3
SiO
1.5
) networks have been prepared by a modified sol–gel process using surfactant and urea as a phase-separation inhibitor and as an accelerator for the condensation reaction, respectively. Optimized aerogels dried under a supercritical condition not only showed the similar properties as conventional pure silica aerogels such as high transparency and porosity etc, but also demonstrated outstanding mechanical strength against compression; the aerogel drastically shrank upon loading and then recovered when unloaded, which is called a “spring-back” behavior. On ambient pressure drying, the wet gel also exhibited the similar response against compression stress originated from the capillary pressure, and thus xerogels with the comparative structure and properties to those of corresponding aerogels have also been obtained. This unusual mechanical behavior is attributed to the trifunctional flexible networks of MSQ, low silanol concentration which prevents the irreversible shrinkage, and high concentration of a hydrophobic methyl group directly attached to every silicon atom which helps re-expansion after the temporal shrinkage.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s10971-008-1756-6</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0928-0707 |
ispartof | Journal of sol-gel science and technology, 2008-11, Vol.48 (1-2), p.172-181 |
issn | 0928-0707 1573-4846 |
language | eng |
recordid | cdi_proquest_miscellaneous_34877669 |
source | Springer Nature |
subjects | Capillary pressure Ceramics Chemistry Chemistry and Materials Science Colloidal gels. Colloidal sols Colloidal state and disperse state Composites Compressive strength Exact sciences and technology General and physical chemistry Glass Inorganic Chemistry Materials Science Mechanical properties Nanotechnology Natural Materials Optical and Electronic Materials Original Paper Porosity Porous materials Pressure Shrinkage Silica aerogels Silicon dioxide Sol-gel processes Xerogels |
title | Elastic organic–inorganic hybrid aerogels and xerogels |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T16%3A44%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Elastic%20organic%E2%80%93inorganic%20hybrid%20aerogels%20and%20xerogels&rft.jtitle=Journal%20of%20sol-gel%20science%20and%20technology&rft.au=Kanamori,%20Kazuyoshi&rft.date=2008-11-01&rft.volume=48&rft.issue=1-2&rft.spage=172&rft.epage=181&rft.pages=172-181&rft.issn=0928-0707&rft.eissn=1573-4846&rft_id=info:doi/10.1007/s10971-008-1756-6&rft_dat=%3Cproquest_cross%3E2259559637%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c443t-4f0f38c9607d05455dd5123560adb405403051edef443a0e180ea55407b1ec143%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2259559637&rft_id=info:pmid/&rfr_iscdi=true |