Loading…
Auto-parametric semi-trivial and post-critical response of a spherical pendulum damper
The pendulum vibration damper modelled as a two degree of freedom strongly non-linear auto-parametric system is investigated. A kinematic external excitation in the suspension point is applied. The excitation is considered to be horizontal and harmonically variable in time. A semi-trivial solution a...
Saved in:
Published in: | Computers & structures 2009-10, Vol.87 (19), p.1204-1215 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c346t-ed944b041729e278949dcd1eedbefbad83d43a4ffb333bc65d20cdaf2d3d64bc3 |
---|---|
cites | cdi_FETCH-LOGICAL-c346t-ed944b041729e278949dcd1eedbefbad83d43a4ffb333bc65d20cdaf2d3d64bc3 |
container_end_page | 1215 |
container_issue | 19 |
container_start_page | 1204 |
container_title | Computers & structures |
container_volume | 87 |
creator | Náprstek, Jiří Fischer, Cyril |
description | The pendulum vibration damper modelled as a two degree of freedom strongly non-linear auto-parametric system is investigated. A kinematic external excitation in the suspension point is applied. The excitation is considered to be horizontal and harmonically variable in time. A semi-trivial solution and its stability are analyzed. Special attention is paid to the resonance domain. In certain domains of pendulum and excitation parameters the semi-trivial solution does not exist in this domain and various post-critical three-dimensional regimes occur. Some of them are non-stationary despite the harmonic excitation. Three different types of the resonance domain are investigated. Their main properties depend significantly on dynamic parameters of the pendulum and of the external excitation amplitude. An analytical and numerical study brings forth several recommendations for designers of these devices. Their aim is to avoid any post-critical response regimes endangering the pendulum functionality. |
doi_str_mv | 10.1016/j.compstruc.2008.11.015 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_34944687</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0045794908002654</els_id><sourcerecordid>34944687</sourcerecordid><originalsourceid>FETCH-LOGICAL-c346t-ed944b041729e278949dcd1eedbefbad83d43a4ffb333bc65d20cdaf2d3d64bc3</originalsourceid><addsrcrecordid>eNqFkE1LxDAQhoMouK7-Bnvyljppsv04LotfIHhRryFNppilbWKSCv57oytePc0wvO87Mw8hlwxKBqy-3pfaTT6msOiyAmhLxkpgmyOyYm3T0aoS_JisAMSGNp3oTslZjHsAqAXAirxul-SoV0FNmILVRcTJ0tx9WDUWajaFdzFRHWyyOk8CRu_miIUbClVE_4bhZ-5xNsu4TIVRk8dwTk4GNUa8-K1r8nJ787y7p49Pdw-77SPVXNSJoumE6EGwpuqwatp8n9GGIZoeh16ZlhvBlRiGnnPe63pjKtBGDZXhpha95mtydcj1wb0vGJOcbNQ4jmpGt0TJRV5Qt00WNgehDi7GgIP0wU4qfEoG8puj3Ms_jvKbo2RMZo7ZuT04Mf_xYTHIqC3OGo0NqJM0zv6b8QVRNoOX</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>34944687</pqid></control><display><type>article</type><title>Auto-parametric semi-trivial and post-critical response of a spherical pendulum damper</title><source>ScienceDirect Journals</source><creator>Náprstek, Jiří ; Fischer, Cyril</creator><creatorcontrib>Náprstek, Jiří ; Fischer, Cyril</creatorcontrib><description>The pendulum vibration damper modelled as a two degree of freedom strongly non-linear auto-parametric system is investigated. A kinematic external excitation in the suspension point is applied. The excitation is considered to be horizontal and harmonically variable in time. A semi-trivial solution and its stability are analyzed. Special attention is paid to the resonance domain. In certain domains of pendulum and excitation parameters the semi-trivial solution does not exist in this domain and various post-critical three-dimensional regimes occur. Some of them are non-stationary despite the harmonic excitation. Three different types of the resonance domain are investigated. Their main properties depend significantly on dynamic parameters of the pendulum and of the external excitation amplitude. An analytical and numerical study brings forth several recommendations for designers of these devices. Their aim is to avoid any post-critical response regimes endangering the pendulum functionality.</description><identifier>ISSN: 0045-7949</identifier><identifier>EISSN: 1879-2243</identifier><identifier>DOI: 10.1016/j.compstruc.2008.11.015</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Asymptotic methods ; Auto-parametric systems ; Bifurcation points ; Dynamic stability ; Non-linear vibration ; Spherical pendulum</subject><ispartof>Computers & structures, 2009-10, Vol.87 (19), p.1204-1215</ispartof><rights>2008 Civil-Comp Ltd. and Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c346t-ed944b041729e278949dcd1eedbefbad83d43a4ffb333bc65d20cdaf2d3d64bc3</citedby><cites>FETCH-LOGICAL-c346t-ed944b041729e278949dcd1eedbefbad83d43a4ffb333bc65d20cdaf2d3d64bc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Náprstek, Jiří</creatorcontrib><creatorcontrib>Fischer, Cyril</creatorcontrib><title>Auto-parametric semi-trivial and post-critical response of a spherical pendulum damper</title><title>Computers & structures</title><description>The pendulum vibration damper modelled as a two degree of freedom strongly non-linear auto-parametric system is investigated. A kinematic external excitation in the suspension point is applied. The excitation is considered to be horizontal and harmonically variable in time. A semi-trivial solution and its stability are analyzed. Special attention is paid to the resonance domain. In certain domains of pendulum and excitation parameters the semi-trivial solution does not exist in this domain and various post-critical three-dimensional regimes occur. Some of them are non-stationary despite the harmonic excitation. Three different types of the resonance domain are investigated. Their main properties depend significantly on dynamic parameters of the pendulum and of the external excitation amplitude. An analytical and numerical study brings forth several recommendations for designers of these devices. Their aim is to avoid any post-critical response regimes endangering the pendulum functionality.</description><subject>Asymptotic methods</subject><subject>Auto-parametric systems</subject><subject>Bifurcation points</subject><subject>Dynamic stability</subject><subject>Non-linear vibration</subject><subject>Spherical pendulum</subject><issn>0045-7949</issn><issn>1879-2243</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LxDAQhoMouK7-Bnvyljppsv04LotfIHhRryFNppilbWKSCv57oytePc0wvO87Mw8hlwxKBqy-3pfaTT6msOiyAmhLxkpgmyOyYm3T0aoS_JisAMSGNp3oTslZjHsAqAXAirxul-SoV0FNmILVRcTJ0tx9WDUWajaFdzFRHWyyOk8CRu_miIUbClVE_4bhZ-5xNsu4TIVRk8dwTk4GNUa8-K1r8nJ787y7p49Pdw-77SPVXNSJoumE6EGwpuqwatp8n9GGIZoeh16ZlhvBlRiGnnPe63pjKtBGDZXhpha95mtydcj1wb0vGJOcbNQ4jmpGt0TJRV5Qt00WNgehDi7GgIP0wU4qfEoG8puj3Ms_jvKbo2RMZo7ZuT04Mf_xYTHIqC3OGo0NqJM0zv6b8QVRNoOX</recordid><startdate>20091001</startdate><enddate>20091001</enddate><creator>Náprstek, Jiří</creator><creator>Fischer, Cyril</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20091001</creationdate><title>Auto-parametric semi-trivial and post-critical response of a spherical pendulum damper</title><author>Náprstek, Jiří ; Fischer, Cyril</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c346t-ed944b041729e278949dcd1eedbefbad83d43a4ffb333bc65d20cdaf2d3d64bc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Asymptotic methods</topic><topic>Auto-parametric systems</topic><topic>Bifurcation points</topic><topic>Dynamic stability</topic><topic>Non-linear vibration</topic><topic>Spherical pendulum</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Náprstek, Jiří</creatorcontrib><creatorcontrib>Fischer, Cyril</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computers & structures</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Náprstek, Jiří</au><au>Fischer, Cyril</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Auto-parametric semi-trivial and post-critical response of a spherical pendulum damper</atitle><jtitle>Computers & structures</jtitle><date>2009-10-01</date><risdate>2009</risdate><volume>87</volume><issue>19</issue><spage>1204</spage><epage>1215</epage><pages>1204-1215</pages><issn>0045-7949</issn><eissn>1879-2243</eissn><abstract>The pendulum vibration damper modelled as a two degree of freedom strongly non-linear auto-parametric system is investigated. A kinematic external excitation in the suspension point is applied. The excitation is considered to be horizontal and harmonically variable in time. A semi-trivial solution and its stability are analyzed. Special attention is paid to the resonance domain. In certain domains of pendulum and excitation parameters the semi-trivial solution does not exist in this domain and various post-critical three-dimensional regimes occur. Some of them are non-stationary despite the harmonic excitation. Three different types of the resonance domain are investigated. Their main properties depend significantly on dynamic parameters of the pendulum and of the external excitation amplitude. An analytical and numerical study brings forth several recommendations for designers of these devices. Their aim is to avoid any post-critical response regimes endangering the pendulum functionality.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.compstruc.2008.11.015</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0045-7949 |
ispartof | Computers & structures, 2009-10, Vol.87 (19), p.1204-1215 |
issn | 0045-7949 1879-2243 |
language | eng |
recordid | cdi_proquest_miscellaneous_34944687 |
source | ScienceDirect Journals |
subjects | Asymptotic methods Auto-parametric systems Bifurcation points Dynamic stability Non-linear vibration Spherical pendulum |
title | Auto-parametric semi-trivial and post-critical response of a spherical pendulum damper |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T10%3A02%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Auto-parametric%20semi-trivial%20and%20post-critical%20response%20of%20a%20spherical%20pendulum%20damper&rft.jtitle=Computers%20&%20structures&rft.au=N%C3%A1prstek,%20Ji%C5%99%C3%AD&rft.date=2009-10-01&rft.volume=87&rft.issue=19&rft.spage=1204&rft.epage=1215&rft.pages=1204-1215&rft.issn=0045-7949&rft.eissn=1879-2243&rft_id=info:doi/10.1016/j.compstruc.2008.11.015&rft_dat=%3Cproquest_cross%3E34944687%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c346t-ed944b041729e278949dcd1eedbefbad83d43a4ffb333bc65d20cdaf2d3d64bc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=34944687&rft_id=info:pmid/&rfr_iscdi=true |