Loading…

Auto-parametric semi-trivial and post-critical response of a spherical pendulum damper

The pendulum vibration damper modelled as a two degree of freedom strongly non-linear auto-parametric system is investigated. A kinematic external excitation in the suspension point is applied. The excitation is considered to be horizontal and harmonically variable in time. A semi-trivial solution a...

Full description

Saved in:
Bibliographic Details
Published in:Computers & structures 2009-10, Vol.87 (19), p.1204-1215
Main Authors: Náprstek, Jiří, Fischer, Cyril
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c346t-ed944b041729e278949dcd1eedbefbad83d43a4ffb333bc65d20cdaf2d3d64bc3
cites cdi_FETCH-LOGICAL-c346t-ed944b041729e278949dcd1eedbefbad83d43a4ffb333bc65d20cdaf2d3d64bc3
container_end_page 1215
container_issue 19
container_start_page 1204
container_title Computers & structures
container_volume 87
creator Náprstek, Jiří
Fischer, Cyril
description The pendulum vibration damper modelled as a two degree of freedom strongly non-linear auto-parametric system is investigated. A kinematic external excitation in the suspension point is applied. The excitation is considered to be horizontal and harmonically variable in time. A semi-trivial solution and its stability are analyzed. Special attention is paid to the resonance domain. In certain domains of pendulum and excitation parameters the semi-trivial solution does not exist in this domain and various post-critical three-dimensional regimes occur. Some of them are non-stationary despite the harmonic excitation. Three different types of the resonance domain are investigated. Their main properties depend significantly on dynamic parameters of the pendulum and of the external excitation amplitude. An analytical and numerical study brings forth several recommendations for designers of these devices. Their aim is to avoid any post-critical response regimes endangering the pendulum functionality.
doi_str_mv 10.1016/j.compstruc.2008.11.015
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_34944687</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0045794908002654</els_id><sourcerecordid>34944687</sourcerecordid><originalsourceid>FETCH-LOGICAL-c346t-ed944b041729e278949dcd1eedbefbad83d43a4ffb333bc65d20cdaf2d3d64bc3</originalsourceid><addsrcrecordid>eNqFkE1LxDAQhoMouK7-Bnvyljppsv04LotfIHhRryFNppilbWKSCv57oytePc0wvO87Mw8hlwxKBqy-3pfaTT6msOiyAmhLxkpgmyOyYm3T0aoS_JisAMSGNp3oTslZjHsAqAXAirxul-SoV0FNmILVRcTJ0tx9WDUWajaFdzFRHWyyOk8CRu_miIUbClVE_4bhZ-5xNsu4TIVRk8dwTk4GNUa8-K1r8nJ787y7p49Pdw-77SPVXNSJoumE6EGwpuqwatp8n9GGIZoeh16ZlhvBlRiGnnPe63pjKtBGDZXhpha95mtydcj1wb0vGJOcbNQ4jmpGt0TJRV5Qt00WNgehDi7GgIP0wU4qfEoG8puj3Ms_jvKbo2RMZo7ZuT04Mf_xYTHIqC3OGo0NqJM0zv6b8QVRNoOX</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>34944687</pqid></control><display><type>article</type><title>Auto-parametric semi-trivial and post-critical response of a spherical pendulum damper</title><source>ScienceDirect Journals</source><creator>Náprstek, Jiří ; Fischer, Cyril</creator><creatorcontrib>Náprstek, Jiří ; Fischer, Cyril</creatorcontrib><description>The pendulum vibration damper modelled as a two degree of freedom strongly non-linear auto-parametric system is investigated. A kinematic external excitation in the suspension point is applied. The excitation is considered to be horizontal and harmonically variable in time. A semi-trivial solution and its stability are analyzed. Special attention is paid to the resonance domain. In certain domains of pendulum and excitation parameters the semi-trivial solution does not exist in this domain and various post-critical three-dimensional regimes occur. Some of them are non-stationary despite the harmonic excitation. Three different types of the resonance domain are investigated. Their main properties depend significantly on dynamic parameters of the pendulum and of the external excitation amplitude. An analytical and numerical study brings forth several recommendations for designers of these devices. Their aim is to avoid any post-critical response regimes endangering the pendulum functionality.</description><identifier>ISSN: 0045-7949</identifier><identifier>EISSN: 1879-2243</identifier><identifier>DOI: 10.1016/j.compstruc.2008.11.015</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Asymptotic methods ; Auto-parametric systems ; Bifurcation points ; Dynamic stability ; Non-linear vibration ; Spherical pendulum</subject><ispartof>Computers &amp; structures, 2009-10, Vol.87 (19), p.1204-1215</ispartof><rights>2008 Civil-Comp Ltd. and Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c346t-ed944b041729e278949dcd1eedbefbad83d43a4ffb333bc65d20cdaf2d3d64bc3</citedby><cites>FETCH-LOGICAL-c346t-ed944b041729e278949dcd1eedbefbad83d43a4ffb333bc65d20cdaf2d3d64bc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Náprstek, Jiří</creatorcontrib><creatorcontrib>Fischer, Cyril</creatorcontrib><title>Auto-parametric semi-trivial and post-critical response of a spherical pendulum damper</title><title>Computers &amp; structures</title><description>The pendulum vibration damper modelled as a two degree of freedom strongly non-linear auto-parametric system is investigated. A kinematic external excitation in the suspension point is applied. The excitation is considered to be horizontal and harmonically variable in time. A semi-trivial solution and its stability are analyzed. Special attention is paid to the resonance domain. In certain domains of pendulum and excitation parameters the semi-trivial solution does not exist in this domain and various post-critical three-dimensional regimes occur. Some of them are non-stationary despite the harmonic excitation. Three different types of the resonance domain are investigated. Their main properties depend significantly on dynamic parameters of the pendulum and of the external excitation amplitude. An analytical and numerical study brings forth several recommendations for designers of these devices. Their aim is to avoid any post-critical response regimes endangering the pendulum functionality.</description><subject>Asymptotic methods</subject><subject>Auto-parametric systems</subject><subject>Bifurcation points</subject><subject>Dynamic stability</subject><subject>Non-linear vibration</subject><subject>Spherical pendulum</subject><issn>0045-7949</issn><issn>1879-2243</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LxDAQhoMouK7-Bnvyljppsv04LotfIHhRryFNppilbWKSCv57oytePc0wvO87Mw8hlwxKBqy-3pfaTT6msOiyAmhLxkpgmyOyYm3T0aoS_JisAMSGNp3oTslZjHsAqAXAirxul-SoV0FNmILVRcTJ0tx9WDUWajaFdzFRHWyyOk8CRu_miIUbClVE_4bhZ-5xNsu4TIVRk8dwTk4GNUa8-K1r8nJ787y7p49Pdw-77SPVXNSJoumE6EGwpuqwatp8n9GGIZoeh16ZlhvBlRiGnnPe63pjKtBGDZXhpha95mtydcj1wb0vGJOcbNQ4jmpGt0TJRV5Qt00WNgehDi7GgIP0wU4qfEoG8puj3Ms_jvKbo2RMZo7ZuT04Mf_xYTHIqC3OGo0NqJM0zv6b8QVRNoOX</recordid><startdate>20091001</startdate><enddate>20091001</enddate><creator>Náprstek, Jiří</creator><creator>Fischer, Cyril</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20091001</creationdate><title>Auto-parametric semi-trivial and post-critical response of a spherical pendulum damper</title><author>Náprstek, Jiří ; Fischer, Cyril</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c346t-ed944b041729e278949dcd1eedbefbad83d43a4ffb333bc65d20cdaf2d3d64bc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Asymptotic methods</topic><topic>Auto-parametric systems</topic><topic>Bifurcation points</topic><topic>Dynamic stability</topic><topic>Non-linear vibration</topic><topic>Spherical pendulum</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Náprstek, Jiří</creatorcontrib><creatorcontrib>Fischer, Cyril</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computers &amp; structures</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Náprstek, Jiří</au><au>Fischer, Cyril</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Auto-parametric semi-trivial and post-critical response of a spherical pendulum damper</atitle><jtitle>Computers &amp; structures</jtitle><date>2009-10-01</date><risdate>2009</risdate><volume>87</volume><issue>19</issue><spage>1204</spage><epage>1215</epage><pages>1204-1215</pages><issn>0045-7949</issn><eissn>1879-2243</eissn><abstract>The pendulum vibration damper modelled as a two degree of freedom strongly non-linear auto-parametric system is investigated. A kinematic external excitation in the suspension point is applied. The excitation is considered to be horizontal and harmonically variable in time. A semi-trivial solution and its stability are analyzed. Special attention is paid to the resonance domain. In certain domains of pendulum and excitation parameters the semi-trivial solution does not exist in this domain and various post-critical three-dimensional regimes occur. Some of them are non-stationary despite the harmonic excitation. Three different types of the resonance domain are investigated. Their main properties depend significantly on dynamic parameters of the pendulum and of the external excitation amplitude. An analytical and numerical study brings forth several recommendations for designers of these devices. Their aim is to avoid any post-critical response regimes endangering the pendulum functionality.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.compstruc.2008.11.015</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0045-7949
ispartof Computers & structures, 2009-10, Vol.87 (19), p.1204-1215
issn 0045-7949
1879-2243
language eng
recordid cdi_proquest_miscellaneous_34944687
source ScienceDirect Journals
subjects Asymptotic methods
Auto-parametric systems
Bifurcation points
Dynamic stability
Non-linear vibration
Spherical pendulum
title Auto-parametric semi-trivial and post-critical response of a spherical pendulum damper
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T10%3A02%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Auto-parametric%20semi-trivial%20and%20post-critical%20response%20of%20a%20spherical%20pendulum%20damper&rft.jtitle=Computers%20&%20structures&rft.au=N%C3%A1prstek,%20Ji%C5%99%C3%AD&rft.date=2009-10-01&rft.volume=87&rft.issue=19&rft.spage=1204&rft.epage=1215&rft.pages=1204-1215&rft.issn=0045-7949&rft.eissn=1879-2243&rft_id=info:doi/10.1016/j.compstruc.2008.11.015&rft_dat=%3Cproquest_cross%3E34944687%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c346t-ed944b041729e278949dcd1eedbefbad83d43a4ffb333bc65d20cdaf2d3d64bc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=34944687&rft_id=info:pmid/&rfr_iscdi=true