Loading…
Validating neural network-based online adaptive systems: a case study
Biologically inspired soft computing paradigms such as neural networks are popular learning models adopted in online adaptive systems for their ability to cope with the demands of a changing environment. However, continual changes induce uncertainty that limits the applicability of conventional vali...
Saved in:
Published in: | Software quality journal 2007-09, Vol.15 (3), p.309-326 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c303t-e12e0d3446600e20a438e603b33eb438ef936afcf0fe29c95605394a815644d33 |
---|---|
cites | cdi_FETCH-LOGICAL-c303t-e12e0d3446600e20a438e603b33eb438ef936afcf0fe29c95605394a815644d33 |
container_end_page | 326 |
container_issue | 3 |
container_start_page | 309 |
container_title | Software quality journal |
container_volume | 15 |
creator | Liu, Yan Cukic, Bojan Gururajan, Srikanth |
description | Biologically inspired soft computing paradigms such as neural networks are popular learning models adopted in online adaptive systems for their ability to cope with the demands of a changing environment. However, continual changes induce uncertainty that limits the applicability of conventional validation techniques to assure the reliable performance of such systems. In this paper, we discuss a dynamic approach to validate the adaptive system component. Our approach consists of two run-time techniques: (1) a statistical learning tool that detects unforeseen data; and (2) a reliability measure of the neural network output after it accommodates the environmental changes. A case study on NASA F-15 flight control system demonstrates that our techniques effectively detect unusual events and provide validation inferences in a real-time manner. [PUBLICATION ABSTRACT] |
doi_str_mv | 10.1007/s11219-007-9017-4 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_34954484</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>34954484</sourcerecordid><originalsourceid>FETCH-LOGICAL-c303t-e12e0d3446600e20a438e603b33eb438ef936afcf0fe29c95605394a815644d33</originalsourceid><addsrcrecordid>eNpdkD1PwzAQhi0EEqXwA9giBjbDOXdxYjZUlQ-pEguwWm5yQSlpUmwH1H9PojIxve_wvKfTI8SlghsFkN8GpVJl5FilAZVLOhIzleUoFer8WMzAaJQGFZ2KsxA2ANOKZmL57tqmcrHpPpKOB-_aMeJP7z_l2gWukr5rm44TV7ldbL45CfsQeRvuEpeUI5CEOFT7c3FSuzbwxV_OxdvD8nXxJFcvj8-L-5UsETBKVilDhURaA3AKjrBgDbhG5PXUa4Pa1WUNNaemNJmGDA25QmWaqEKci-vD3Z3vvwYO0W6bUHLbuo77IVgkkxEVNIJX_8BNP_hu_M2mmEFBeZqOkDpApe9D8FzbnW-2zu-tAjv5sQerdqqTVUv4C-cpaQQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>235084722</pqid></control><display><type>article</type><title>Validating neural network-based online adaptive systems: a case study</title><source>ABI/INFORM Global</source><source>Springer Nature:Jisc Collections:Springer Nature Read and Publish 2023-2025: Springer Reading List</source><creator>Liu, Yan ; Cukic, Bojan ; Gururajan, Srikanth</creator><creatorcontrib>Liu, Yan ; Cukic, Bojan ; Gururajan, Srikanth</creatorcontrib><description>Biologically inspired soft computing paradigms such as neural networks are popular learning models adopted in online adaptive systems for their ability to cope with the demands of a changing environment. However, continual changes induce uncertainty that limits the applicability of conventional validation techniques to assure the reliable performance of such systems. In this paper, we discuss a dynamic approach to validate the adaptive system component. Our approach consists of two run-time techniques: (1) a statistical learning tool that detects unforeseen data; and (2) a reliability measure of the neural network output after it accommodates the environmental changes. A case study on NASA F-15 flight control system demonstrates that our techniques effectively detect unusual events and provide validation inferences in a real-time manner. [PUBLICATION ABSTRACT]</description><identifier>ISSN: 0963-9314</identifier><identifier>EISSN: 1573-1367</identifier><identifier>DOI: 10.1007/s11219-007-9017-4</identifier><language>eng</language><publisher>Dordrecht: Springer Nature B.V</publisher><subject>Adaptability ; Adaptation ; Aerospace engineering ; Aerospace industry ; Aircraft ; Algorithms ; Automation ; Case studies ; Computer engineering ; Control systems ; Distance learning ; Learning ; Neural networks ; Performance evaluation ; Real time ; Software ; Software quality ; Studies</subject><ispartof>Software quality journal, 2007-09, Vol.15 (3), p.309-326</ispartof><rights>Springer Science+Business Media, LLC 2007</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c303t-e12e0d3446600e20a438e603b33eb438ef936afcf0fe29c95605394a815644d33</citedby><cites>FETCH-LOGICAL-c303t-e12e0d3446600e20a438e603b33eb438ef936afcf0fe29c95605394a815644d33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/235084722/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/235084722?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,11667,27901,27902,36037,36038,44339,74865</link.rule.ids></links><search><creatorcontrib>Liu, Yan</creatorcontrib><creatorcontrib>Cukic, Bojan</creatorcontrib><creatorcontrib>Gururajan, Srikanth</creatorcontrib><title>Validating neural network-based online adaptive systems: a case study</title><title>Software quality journal</title><description>Biologically inspired soft computing paradigms such as neural networks are popular learning models adopted in online adaptive systems for their ability to cope with the demands of a changing environment. However, continual changes induce uncertainty that limits the applicability of conventional validation techniques to assure the reliable performance of such systems. In this paper, we discuss a dynamic approach to validate the adaptive system component. Our approach consists of two run-time techniques: (1) a statistical learning tool that detects unforeseen data; and (2) a reliability measure of the neural network output after it accommodates the environmental changes. A case study on NASA F-15 flight control system demonstrates that our techniques effectively detect unusual events and provide validation inferences in a real-time manner. [PUBLICATION ABSTRACT]</description><subject>Adaptability</subject><subject>Adaptation</subject><subject>Aerospace engineering</subject><subject>Aerospace industry</subject><subject>Aircraft</subject><subject>Algorithms</subject><subject>Automation</subject><subject>Case studies</subject><subject>Computer engineering</subject><subject>Control systems</subject><subject>Distance learning</subject><subject>Learning</subject><subject>Neural networks</subject><subject>Performance evaluation</subject><subject>Real time</subject><subject>Software</subject><subject>Software quality</subject><subject>Studies</subject><issn>0963-9314</issn><issn>1573-1367</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNpdkD1PwzAQhi0EEqXwA9giBjbDOXdxYjZUlQ-pEguwWm5yQSlpUmwH1H9PojIxve_wvKfTI8SlghsFkN8GpVJl5FilAZVLOhIzleUoFer8WMzAaJQGFZ2KsxA2ANOKZmL57tqmcrHpPpKOB-_aMeJP7z_l2gWukr5rm44TV7ldbL45CfsQeRvuEpeUI5CEOFT7c3FSuzbwxV_OxdvD8nXxJFcvj8-L-5UsETBKVilDhURaA3AKjrBgDbhG5PXUa4Pa1WUNNaemNJmGDA25QmWaqEKci-vD3Z3vvwYO0W6bUHLbuo77IVgkkxEVNIJX_8BNP_hu_M2mmEFBeZqOkDpApe9D8FzbnW-2zu-tAjv5sQerdqqTVUv4C-cpaQQ</recordid><startdate>20070901</startdate><enddate>20070901</enddate><creator>Liu, Yan</creator><creator>Cukic, Bojan</creator><creator>Gururajan, Srikanth</creator><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>0U~</scope><scope>1-H</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L.0</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PKEHL</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope></search><sort><creationdate>20070901</creationdate><title>Validating neural network-based online adaptive systems: a case study</title><author>Liu, Yan ; Cukic, Bojan ; Gururajan, Srikanth</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c303t-e12e0d3446600e20a438e603b33eb438ef936afcf0fe29c95605394a815644d33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Adaptability</topic><topic>Adaptation</topic><topic>Aerospace engineering</topic><topic>Aerospace industry</topic><topic>Aircraft</topic><topic>Algorithms</topic><topic>Automation</topic><topic>Case studies</topic><topic>Computer engineering</topic><topic>Control systems</topic><topic>Distance learning</topic><topic>Learning</topic><topic>Neural networks</topic><topic>Performance evaluation</topic><topic>Real time</topic><topic>Software</topic><topic>Software quality</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Yan</creatorcontrib><creatorcontrib>Cukic, Bojan</creatorcontrib><creatorcontrib>Gururajan, Srikanth</creatorcontrib><collection>CrossRef</collection><collection>Global News & ABI/Inform Professional</collection><collection>Trade PRO</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Professional Standard</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied & Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Software quality journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Yan</au><au>Cukic, Bojan</au><au>Gururajan, Srikanth</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Validating neural network-based online adaptive systems: a case study</atitle><jtitle>Software quality journal</jtitle><date>2007-09-01</date><risdate>2007</risdate><volume>15</volume><issue>3</issue><spage>309</spage><epage>326</epage><pages>309-326</pages><issn>0963-9314</issn><eissn>1573-1367</eissn><abstract>Biologically inspired soft computing paradigms such as neural networks are popular learning models adopted in online adaptive systems for their ability to cope with the demands of a changing environment. However, continual changes induce uncertainty that limits the applicability of conventional validation techniques to assure the reliable performance of such systems. In this paper, we discuss a dynamic approach to validate the adaptive system component. Our approach consists of two run-time techniques: (1) a statistical learning tool that detects unforeseen data; and (2) a reliability measure of the neural network output after it accommodates the environmental changes. A case study on NASA F-15 flight control system demonstrates that our techniques effectively detect unusual events and provide validation inferences in a real-time manner. [PUBLICATION ABSTRACT]</abstract><cop>Dordrecht</cop><pub>Springer Nature B.V</pub><doi>10.1007/s11219-007-9017-4</doi><tpages>18</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0963-9314 |
ispartof | Software quality journal, 2007-09, Vol.15 (3), p.309-326 |
issn | 0963-9314 1573-1367 |
language | eng |
recordid | cdi_proquest_miscellaneous_34954484 |
source | ABI/INFORM Global; Springer Nature:Jisc Collections:Springer Nature Read and Publish 2023-2025: Springer Reading List |
subjects | Adaptability Adaptation Aerospace engineering Aerospace industry Aircraft Algorithms Automation Case studies Computer engineering Control systems Distance learning Learning Neural networks Performance evaluation Real time Software Software quality Studies |
title | Validating neural network-based online adaptive systems: a case study |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-24T00%3A14%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Validating%20neural%20network-based%20online%20adaptive%20systems:%20a%20case%20study&rft.jtitle=Software%20quality%20journal&rft.au=Liu,%20Yan&rft.date=2007-09-01&rft.volume=15&rft.issue=3&rft.spage=309&rft.epage=326&rft.pages=309-326&rft.issn=0963-9314&rft.eissn=1573-1367&rft_id=info:doi/10.1007/s11219-007-9017-4&rft_dat=%3Cproquest_cross%3E34954484%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c303t-e12e0d3446600e20a438e603b33eb438ef936afcf0fe29c95605394a815644d33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=235084722&rft_id=info:pmid/&rfr_iscdi=true |