Loading…

Validating neural network-based online adaptive systems: a case study

Biologically inspired soft computing paradigms such as neural networks are popular learning models adopted in online adaptive systems for their ability to cope with the demands of a changing environment. However, continual changes induce uncertainty that limits the applicability of conventional vali...

Full description

Saved in:
Bibliographic Details
Published in:Software quality journal 2007-09, Vol.15 (3), p.309-326
Main Authors: Liu, Yan, Cukic, Bojan, Gururajan, Srikanth
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c303t-e12e0d3446600e20a438e603b33eb438ef936afcf0fe29c95605394a815644d33
cites cdi_FETCH-LOGICAL-c303t-e12e0d3446600e20a438e603b33eb438ef936afcf0fe29c95605394a815644d33
container_end_page 326
container_issue 3
container_start_page 309
container_title Software quality journal
container_volume 15
creator Liu, Yan
Cukic, Bojan
Gururajan, Srikanth
description Biologically inspired soft computing paradigms such as neural networks are popular learning models adopted in online adaptive systems for their ability to cope with the demands of a changing environment. However, continual changes induce uncertainty that limits the applicability of conventional validation techniques to assure the reliable performance of such systems. In this paper, we discuss a dynamic approach to validate the adaptive system component. Our approach consists of two run-time techniques: (1) a statistical learning tool that detects unforeseen data; and (2) a reliability measure of the neural network output after it accommodates the environmental changes. A case study on NASA F-15 flight control system demonstrates that our techniques effectively detect unusual events and provide validation inferences in a real-time manner. [PUBLICATION ABSTRACT]
doi_str_mv 10.1007/s11219-007-9017-4
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_34954484</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>34954484</sourcerecordid><originalsourceid>FETCH-LOGICAL-c303t-e12e0d3446600e20a438e603b33eb438ef936afcf0fe29c95605394a815644d33</originalsourceid><addsrcrecordid>eNpdkD1PwzAQhi0EEqXwA9giBjbDOXdxYjZUlQ-pEguwWm5yQSlpUmwH1H9PojIxve_wvKfTI8SlghsFkN8GpVJl5FilAZVLOhIzleUoFer8WMzAaJQGFZ2KsxA2ANOKZmL57tqmcrHpPpKOB-_aMeJP7z_l2gWukr5rm44TV7ldbL45CfsQeRvuEpeUI5CEOFT7c3FSuzbwxV_OxdvD8nXxJFcvj8-L-5UsETBKVilDhURaA3AKjrBgDbhG5PXUa4Pa1WUNNaemNJmGDA25QmWaqEKci-vD3Z3vvwYO0W6bUHLbuo77IVgkkxEVNIJX_8BNP_hu_M2mmEFBeZqOkDpApe9D8FzbnW-2zu-tAjv5sQerdqqTVUv4C-cpaQQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>235084722</pqid></control><display><type>article</type><title>Validating neural network-based online adaptive systems: a case study</title><source>ABI/INFORM Global</source><source>Springer Nature:Jisc Collections:Springer Nature Read and Publish 2023-2025: Springer Reading List</source><creator>Liu, Yan ; Cukic, Bojan ; Gururajan, Srikanth</creator><creatorcontrib>Liu, Yan ; Cukic, Bojan ; Gururajan, Srikanth</creatorcontrib><description>Biologically inspired soft computing paradigms such as neural networks are popular learning models adopted in online adaptive systems for their ability to cope with the demands of a changing environment. However, continual changes induce uncertainty that limits the applicability of conventional validation techniques to assure the reliable performance of such systems. In this paper, we discuss a dynamic approach to validate the adaptive system component. Our approach consists of two run-time techniques: (1) a statistical learning tool that detects unforeseen data; and (2) a reliability measure of the neural network output after it accommodates the environmental changes. A case study on NASA F-15 flight control system demonstrates that our techniques effectively detect unusual events and provide validation inferences in a real-time manner. [PUBLICATION ABSTRACT]</description><identifier>ISSN: 0963-9314</identifier><identifier>EISSN: 1573-1367</identifier><identifier>DOI: 10.1007/s11219-007-9017-4</identifier><language>eng</language><publisher>Dordrecht: Springer Nature B.V</publisher><subject>Adaptability ; Adaptation ; Aerospace engineering ; Aerospace industry ; Aircraft ; Algorithms ; Automation ; Case studies ; Computer engineering ; Control systems ; Distance learning ; Learning ; Neural networks ; Performance evaluation ; Real time ; Software ; Software quality ; Studies</subject><ispartof>Software quality journal, 2007-09, Vol.15 (3), p.309-326</ispartof><rights>Springer Science+Business Media, LLC 2007</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c303t-e12e0d3446600e20a438e603b33eb438ef936afcf0fe29c95605394a815644d33</citedby><cites>FETCH-LOGICAL-c303t-e12e0d3446600e20a438e603b33eb438ef936afcf0fe29c95605394a815644d33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/235084722/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/235084722?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,11667,27901,27902,36037,36038,44339,74865</link.rule.ids></links><search><creatorcontrib>Liu, Yan</creatorcontrib><creatorcontrib>Cukic, Bojan</creatorcontrib><creatorcontrib>Gururajan, Srikanth</creatorcontrib><title>Validating neural network-based online adaptive systems: a case study</title><title>Software quality journal</title><description>Biologically inspired soft computing paradigms such as neural networks are popular learning models adopted in online adaptive systems for their ability to cope with the demands of a changing environment. However, continual changes induce uncertainty that limits the applicability of conventional validation techniques to assure the reliable performance of such systems. In this paper, we discuss a dynamic approach to validate the adaptive system component. Our approach consists of two run-time techniques: (1) a statistical learning tool that detects unforeseen data; and (2) a reliability measure of the neural network output after it accommodates the environmental changes. A case study on NASA F-15 flight control system demonstrates that our techniques effectively detect unusual events and provide validation inferences in a real-time manner. [PUBLICATION ABSTRACT]</description><subject>Adaptability</subject><subject>Adaptation</subject><subject>Aerospace engineering</subject><subject>Aerospace industry</subject><subject>Aircraft</subject><subject>Algorithms</subject><subject>Automation</subject><subject>Case studies</subject><subject>Computer engineering</subject><subject>Control systems</subject><subject>Distance learning</subject><subject>Learning</subject><subject>Neural networks</subject><subject>Performance evaluation</subject><subject>Real time</subject><subject>Software</subject><subject>Software quality</subject><subject>Studies</subject><issn>0963-9314</issn><issn>1573-1367</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNpdkD1PwzAQhi0EEqXwA9giBjbDOXdxYjZUlQ-pEguwWm5yQSlpUmwH1H9PojIxve_wvKfTI8SlghsFkN8GpVJl5FilAZVLOhIzleUoFer8WMzAaJQGFZ2KsxA2ANOKZmL57tqmcrHpPpKOB-_aMeJP7z_l2gWukr5rm44TV7ldbL45CfsQeRvuEpeUI5CEOFT7c3FSuzbwxV_OxdvD8nXxJFcvj8-L-5UsETBKVilDhURaA3AKjrBgDbhG5PXUa4Pa1WUNNaemNJmGDA25QmWaqEKci-vD3Z3vvwYO0W6bUHLbuo77IVgkkxEVNIJX_8BNP_hu_M2mmEFBeZqOkDpApe9D8FzbnW-2zu-tAjv5sQerdqqTVUv4C-cpaQQ</recordid><startdate>20070901</startdate><enddate>20070901</enddate><creator>Liu, Yan</creator><creator>Cukic, Bojan</creator><creator>Gururajan, Srikanth</creator><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>0U~</scope><scope>1-H</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L.0</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PKEHL</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope></search><sort><creationdate>20070901</creationdate><title>Validating neural network-based online adaptive systems: a case study</title><author>Liu, Yan ; Cukic, Bojan ; Gururajan, Srikanth</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c303t-e12e0d3446600e20a438e603b33eb438ef936afcf0fe29c95605394a815644d33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Adaptability</topic><topic>Adaptation</topic><topic>Aerospace engineering</topic><topic>Aerospace industry</topic><topic>Aircraft</topic><topic>Algorithms</topic><topic>Automation</topic><topic>Case studies</topic><topic>Computer engineering</topic><topic>Control systems</topic><topic>Distance learning</topic><topic>Learning</topic><topic>Neural networks</topic><topic>Performance evaluation</topic><topic>Real time</topic><topic>Software</topic><topic>Software quality</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Yan</creatorcontrib><creatorcontrib>Cukic, Bojan</creatorcontrib><creatorcontrib>Gururajan, Srikanth</creatorcontrib><collection>CrossRef</collection><collection>Global News &amp; ABI/Inform Professional</collection><collection>Trade PRO</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Professional Standard</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied &amp; Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Software quality journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Yan</au><au>Cukic, Bojan</au><au>Gururajan, Srikanth</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Validating neural network-based online adaptive systems: a case study</atitle><jtitle>Software quality journal</jtitle><date>2007-09-01</date><risdate>2007</risdate><volume>15</volume><issue>3</issue><spage>309</spage><epage>326</epage><pages>309-326</pages><issn>0963-9314</issn><eissn>1573-1367</eissn><abstract>Biologically inspired soft computing paradigms such as neural networks are popular learning models adopted in online adaptive systems for their ability to cope with the demands of a changing environment. However, continual changes induce uncertainty that limits the applicability of conventional validation techniques to assure the reliable performance of such systems. In this paper, we discuss a dynamic approach to validate the adaptive system component. Our approach consists of two run-time techniques: (1) a statistical learning tool that detects unforeseen data; and (2) a reliability measure of the neural network output after it accommodates the environmental changes. A case study on NASA F-15 flight control system demonstrates that our techniques effectively detect unusual events and provide validation inferences in a real-time manner. [PUBLICATION ABSTRACT]</abstract><cop>Dordrecht</cop><pub>Springer Nature B.V</pub><doi>10.1007/s11219-007-9017-4</doi><tpages>18</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0963-9314
ispartof Software quality journal, 2007-09, Vol.15 (3), p.309-326
issn 0963-9314
1573-1367
language eng
recordid cdi_proquest_miscellaneous_34954484
source ABI/INFORM Global; Springer Nature:Jisc Collections:Springer Nature Read and Publish 2023-2025: Springer Reading List
subjects Adaptability
Adaptation
Aerospace engineering
Aerospace industry
Aircraft
Algorithms
Automation
Case studies
Computer engineering
Control systems
Distance learning
Learning
Neural networks
Performance evaluation
Real time
Software
Software quality
Studies
title Validating neural network-based online adaptive systems: a case study
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-24T00%3A14%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Validating%20neural%20network-based%20online%20adaptive%20systems:%20a%20case%20study&rft.jtitle=Software%20quality%20journal&rft.au=Liu,%20Yan&rft.date=2007-09-01&rft.volume=15&rft.issue=3&rft.spage=309&rft.epage=326&rft.pages=309-326&rft.issn=0963-9314&rft.eissn=1573-1367&rft_id=info:doi/10.1007/s11219-007-9017-4&rft_dat=%3Cproquest_cross%3E34954484%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c303t-e12e0d3446600e20a438e603b33eb438ef936afcf0fe29c95605394a815644d33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=235084722&rft_id=info:pmid/&rfr_iscdi=true