Loading…

Hebbian learning rule restraining catastrophic forgetting in pulse neural network

In this paper, a Hebbian learning rule restraining “catastrophic forgetting” is proposed on a pulsed neural network (PNN) with leaky integrate‐and‐fire neurons. The strong point of this learning rule is that a learning of new pattern does not destroy past ones, and that an efficient use of synapses...

Full description

Saved in:
Bibliographic Details
Published in:Electrical engineering in Japan 2005-05, Vol.151 (3), p.50-60
Main Authors: Motoki, Makoto, Hamagami, Tomoki, Koakutsu, Seiichi, Hirata, Hironori
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c4303-eeb50ec3facdd37079b800941891a37f128d9aceb92eb61561aaf22b570f10bd3
container_end_page 60
container_issue 3
container_start_page 50
container_title Electrical engineering in Japan
container_volume 151
creator Motoki, Makoto
Hamagami, Tomoki
Koakutsu, Seiichi
Hirata, Hironori
description In this paper, a Hebbian learning rule restraining “catastrophic forgetting” is proposed on a pulsed neural network (PNN) with leaky integrate‐and‐fire neurons. The strong point of this learning rule is that a learning of new pattern does not destroy past ones, and that an efficient use of synapses is enabled. First, in order to consider the function of the learning rule, a fundamental experiment is carried out. Next, to compare the performance between the proposed learning rule and conventional ones on the application, simulation experiments are examined using autonomous behavior robots which are forced to learn concurrently two different environments. The results of the experiments show that the proposed learning rule clearly restrains “catastrophic forgetting” and enables working of more efficient than conventional PNN learning. © 2005 Wiley Periodicals, Inc. Electr Eng Jpn, 151(3): 50–60, 2005; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/eej.10343
doi_str_mv 10.1002/eej.10343
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_34983433</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>21146782</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4303-eeb50ec3facdd37079b800941891a37f128d9aceb92eb61561aaf22b570f10bd3</originalsourceid><addsrcrecordid>eNqFkEFLw0AQhRdRsFYP_oOcBA-xs7tJNjlKqa0SFEXR27JJJnXbNKm7CbX_3m2j3sTTm3l8bxgeIecUrigAGyEu3MADfkAGNGTgRwGNDskAAhb4QkRwTE6sXQCAoCIekMcZZplWtVehMrWu557pKvQM2tYovTdy1Sq3Net3nXtlY-bYtjtf1966qyx6NXZGVU7aTWOWp-SoVM4--9YhebmZPI9nfvowvR1fp34ecOA-YhYC5rxUeVFwASLJYoAkoHFCFRclZXGRqByzhGEW0TCiSpWMZaGAkkJW8CG56O-uTfPRuX_lStscq0rV2HRW8iCJXQ_8X5BRGkQiZg687MHcNNYaLOXa6JUyW0lB7tqVrl25b9exo57d6Aq3f4NyMrn7Sfh9QtsWP38TyixlJLgI5ev9VM5SeKPpE5ch_wKmQouo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>21146782</pqid></control><display><type>article</type><title>Hebbian learning rule restraining catastrophic forgetting in pulse neural network</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Motoki, Makoto ; Hamagami, Tomoki ; Koakutsu, Seiichi ; Hirata, Hironori</creator><creatorcontrib>Motoki, Makoto ; Hamagami, Tomoki ; Koakutsu, Seiichi ; Hirata, Hironori</creatorcontrib><description>In this paper, a Hebbian learning rule restraining “catastrophic forgetting” is proposed on a pulsed neural network (PNN) with leaky integrate‐and‐fire neurons. The strong point of this learning rule is that a learning of new pattern does not destroy past ones, and that an efficient use of synapses is enabled. First, in order to consider the function of the learning rule, a fundamental experiment is carried out. Next, to compare the performance between the proposed learning rule and conventional ones on the application, simulation experiments are examined using autonomous behavior robots which are forced to learn concurrently two different environments. The results of the experiments show that the proposed learning rule clearly restrains “catastrophic forgetting” and enables working of more efficient than conventional PNN learning. © 2005 Wiley Periodicals, Inc. Electr Eng Jpn, 151(3): 50–60, 2005; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/eej.10343</description><identifier>ISSN: 0424-7760</identifier><identifier>EISSN: 1520-6416</identifier><identifier>DOI: 10.1002/eej.10343</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>catastrophic forgetting ; Hebbian learning ; pulse neural network</subject><ispartof>Electrical engineering in Japan, 2005-05, Vol.151 (3), p.50-60</ispartof><rights>Copyright © 2005 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c4303-eeb50ec3facdd37079b800941891a37f128d9aceb92eb61561aaf22b570f10bd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Motoki, Makoto</creatorcontrib><creatorcontrib>Hamagami, Tomoki</creatorcontrib><creatorcontrib>Koakutsu, Seiichi</creatorcontrib><creatorcontrib>Hirata, Hironori</creatorcontrib><title>Hebbian learning rule restraining catastrophic forgetting in pulse neural network</title><title>Electrical engineering in Japan</title><addtitle>Elect. Eng. Jpn</addtitle><description>In this paper, a Hebbian learning rule restraining “catastrophic forgetting” is proposed on a pulsed neural network (PNN) with leaky integrate‐and‐fire neurons. The strong point of this learning rule is that a learning of new pattern does not destroy past ones, and that an efficient use of synapses is enabled. First, in order to consider the function of the learning rule, a fundamental experiment is carried out. Next, to compare the performance between the proposed learning rule and conventional ones on the application, simulation experiments are examined using autonomous behavior robots which are forced to learn concurrently two different environments. The results of the experiments show that the proposed learning rule clearly restrains “catastrophic forgetting” and enables working of more efficient than conventional PNN learning. © 2005 Wiley Periodicals, Inc. Electr Eng Jpn, 151(3): 50–60, 2005; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/eej.10343</description><subject>catastrophic forgetting</subject><subject>Hebbian learning</subject><subject>pulse neural network</subject><issn>0424-7760</issn><issn>1520-6416</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNqFkEFLw0AQhRdRsFYP_oOcBA-xs7tJNjlKqa0SFEXR27JJJnXbNKm7CbX_3m2j3sTTm3l8bxgeIecUrigAGyEu3MADfkAGNGTgRwGNDskAAhb4QkRwTE6sXQCAoCIekMcZZplWtVehMrWu557pKvQM2tYovTdy1Sq3Net3nXtlY-bYtjtf1966qyx6NXZGVU7aTWOWp-SoVM4--9YhebmZPI9nfvowvR1fp34ecOA-YhYC5rxUeVFwASLJYoAkoHFCFRclZXGRqByzhGEW0TCiSpWMZaGAkkJW8CG56O-uTfPRuX_lStscq0rV2HRW8iCJXQ_8X5BRGkQiZg687MHcNNYaLOXa6JUyW0lB7tqVrl25b9exo57d6Aq3f4NyMrn7Sfh9QtsWP38TyixlJLgI5ev9VM5SeKPpE5ch_wKmQouo</recordid><startdate>200505</startdate><enddate>200505</enddate><creator>Motoki, Makoto</creator><creator>Hamagami, Tomoki</creator><creator>Koakutsu, Seiichi</creator><creator>Hirata, Hironori</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope><scope>7SP</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>L7M</scope></search><sort><creationdate>200505</creationdate><title>Hebbian learning rule restraining catastrophic forgetting in pulse neural network</title><author>Motoki, Makoto ; Hamagami, Tomoki ; Koakutsu, Seiichi ; Hirata, Hironori</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4303-eeb50ec3facdd37079b800941891a37f128d9aceb92eb61561aaf22b570f10bd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>catastrophic forgetting</topic><topic>Hebbian learning</topic><topic>pulse neural network</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Motoki, Makoto</creatorcontrib><creatorcontrib>Hamagami, Tomoki</creatorcontrib><creatorcontrib>Koakutsu, Seiichi</creatorcontrib><creatorcontrib>Hirata, Hironori</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Electrical engineering in Japan</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Motoki, Makoto</au><au>Hamagami, Tomoki</au><au>Koakutsu, Seiichi</au><au>Hirata, Hironori</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hebbian learning rule restraining catastrophic forgetting in pulse neural network</atitle><jtitle>Electrical engineering in Japan</jtitle><addtitle>Elect. Eng. Jpn</addtitle><date>2005-05</date><risdate>2005</risdate><volume>151</volume><issue>3</issue><spage>50</spage><epage>60</epage><pages>50-60</pages><issn>0424-7760</issn><eissn>1520-6416</eissn><abstract>In this paper, a Hebbian learning rule restraining “catastrophic forgetting” is proposed on a pulsed neural network (PNN) with leaky integrate‐and‐fire neurons. The strong point of this learning rule is that a learning of new pattern does not destroy past ones, and that an efficient use of synapses is enabled. First, in order to consider the function of the learning rule, a fundamental experiment is carried out. Next, to compare the performance between the proposed learning rule and conventional ones on the application, simulation experiments are examined using autonomous behavior robots which are forced to learn concurrently two different environments. The results of the experiments show that the proposed learning rule clearly restrains “catastrophic forgetting” and enables working of more efficient than conventional PNN learning. © 2005 Wiley Periodicals, Inc. Electr Eng Jpn, 151(3): 50–60, 2005; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/eej.10343</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><doi>10.1002/eej.10343</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0424-7760
ispartof Electrical engineering in Japan, 2005-05, Vol.151 (3), p.50-60
issn 0424-7760
1520-6416
language eng
recordid cdi_proquest_miscellaneous_34983433
source Wiley-Blackwell Read & Publish Collection
subjects catastrophic forgetting
Hebbian learning
pulse neural network
title Hebbian learning rule restraining catastrophic forgetting in pulse neural network
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T04%3A53%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hebbian%20learning%20rule%20restraining%20catastrophic%20forgetting%20in%20pulse%20neural%20network&rft.jtitle=Electrical%20engineering%20in%20Japan&rft.au=Motoki,%20Makoto&rft.date=2005-05&rft.volume=151&rft.issue=3&rft.spage=50&rft.epage=60&rft.pages=50-60&rft.issn=0424-7760&rft.eissn=1520-6416&rft_id=info:doi/10.1002/eej.10343&rft_dat=%3Cproquest_cross%3E21146782%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4303-eeb50ec3facdd37079b800941891a37f128d9aceb92eb61561aaf22b570f10bd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=21146782&rft_id=info:pmid/&rfr_iscdi=true