Loading…
Hebbian learning rule restraining catastrophic forgetting in pulse neural network
In this paper, a Hebbian learning rule restraining “catastrophic forgetting” is proposed on a pulsed neural network (PNN) with leaky integrate‐and‐fire neurons. The strong point of this learning rule is that a learning of new pattern does not destroy past ones, and that an efficient use of synapses...
Saved in:
Published in: | Electrical engineering in Japan 2005-05, Vol.151 (3), p.50-60 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c4303-eeb50ec3facdd37079b800941891a37f128d9aceb92eb61561aaf22b570f10bd3 |
container_end_page | 60 |
container_issue | 3 |
container_start_page | 50 |
container_title | Electrical engineering in Japan |
container_volume | 151 |
creator | Motoki, Makoto Hamagami, Tomoki Koakutsu, Seiichi Hirata, Hironori |
description | In this paper, a Hebbian learning rule restraining “catastrophic forgetting” is proposed on a pulsed neural network (PNN) with leaky integrate‐and‐fire neurons. The strong point of this learning rule is that a learning of new pattern does not destroy past ones, and that an efficient use of synapses is enabled. First, in order to consider the function of the learning rule, a fundamental experiment is carried out. Next, to compare the performance between the proposed learning rule and conventional ones on the application, simulation experiments are examined using autonomous behavior robots which are forced to learn concurrently two different environments. The results of the experiments show that the proposed learning rule clearly restrains “catastrophic forgetting” and enables working of more efficient than conventional PNN learning. © 2005 Wiley Periodicals, Inc. Electr Eng Jpn, 151(3): 50–60, 2005; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/eej.10343 |
doi_str_mv | 10.1002/eej.10343 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_34983433</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>21146782</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4303-eeb50ec3facdd37079b800941891a37f128d9aceb92eb61561aaf22b570f10bd3</originalsourceid><addsrcrecordid>eNqFkEFLw0AQhRdRsFYP_oOcBA-xs7tJNjlKqa0SFEXR27JJJnXbNKm7CbX_3m2j3sTTm3l8bxgeIecUrigAGyEu3MADfkAGNGTgRwGNDskAAhb4QkRwTE6sXQCAoCIekMcZZplWtVehMrWu557pKvQM2tYovTdy1Sq3Net3nXtlY-bYtjtf1966qyx6NXZGVU7aTWOWp-SoVM4--9YhebmZPI9nfvowvR1fp34ecOA-YhYC5rxUeVFwASLJYoAkoHFCFRclZXGRqByzhGEW0TCiSpWMZaGAkkJW8CG56O-uTfPRuX_lStscq0rV2HRW8iCJXQ_8X5BRGkQiZg687MHcNNYaLOXa6JUyW0lB7tqVrl25b9exo57d6Aq3f4NyMrn7Sfh9QtsWP38TyixlJLgI5ev9VM5SeKPpE5ch_wKmQouo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>21146782</pqid></control><display><type>article</type><title>Hebbian learning rule restraining catastrophic forgetting in pulse neural network</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Motoki, Makoto ; Hamagami, Tomoki ; Koakutsu, Seiichi ; Hirata, Hironori</creator><creatorcontrib>Motoki, Makoto ; Hamagami, Tomoki ; Koakutsu, Seiichi ; Hirata, Hironori</creatorcontrib><description>In this paper, a Hebbian learning rule restraining “catastrophic forgetting” is proposed on a pulsed neural network (PNN) with leaky integrate‐and‐fire neurons. The strong point of this learning rule is that a learning of new pattern does not destroy past ones, and that an efficient use of synapses is enabled. First, in order to consider the function of the learning rule, a fundamental experiment is carried out. Next, to compare the performance between the proposed learning rule and conventional ones on the application, simulation experiments are examined using autonomous behavior robots which are forced to learn concurrently two different environments. The results of the experiments show that the proposed learning rule clearly restrains “catastrophic forgetting” and enables working of more efficient than conventional PNN learning. © 2005 Wiley Periodicals, Inc. Electr Eng Jpn, 151(3): 50–60, 2005; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/eej.10343</description><identifier>ISSN: 0424-7760</identifier><identifier>EISSN: 1520-6416</identifier><identifier>DOI: 10.1002/eej.10343</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>catastrophic forgetting ; Hebbian learning ; pulse neural network</subject><ispartof>Electrical engineering in Japan, 2005-05, Vol.151 (3), p.50-60</ispartof><rights>Copyright © 2005 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c4303-eeb50ec3facdd37079b800941891a37f128d9aceb92eb61561aaf22b570f10bd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Motoki, Makoto</creatorcontrib><creatorcontrib>Hamagami, Tomoki</creatorcontrib><creatorcontrib>Koakutsu, Seiichi</creatorcontrib><creatorcontrib>Hirata, Hironori</creatorcontrib><title>Hebbian learning rule restraining catastrophic forgetting in pulse neural network</title><title>Electrical engineering in Japan</title><addtitle>Elect. Eng. Jpn</addtitle><description>In this paper, a Hebbian learning rule restraining “catastrophic forgetting” is proposed on a pulsed neural network (PNN) with leaky integrate‐and‐fire neurons. The strong point of this learning rule is that a learning of new pattern does not destroy past ones, and that an efficient use of synapses is enabled. First, in order to consider the function of the learning rule, a fundamental experiment is carried out. Next, to compare the performance between the proposed learning rule and conventional ones on the application, simulation experiments are examined using autonomous behavior robots which are forced to learn concurrently two different environments. The results of the experiments show that the proposed learning rule clearly restrains “catastrophic forgetting” and enables working of more efficient than conventional PNN learning. © 2005 Wiley Periodicals, Inc. Electr Eng Jpn, 151(3): 50–60, 2005; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/eej.10343</description><subject>catastrophic forgetting</subject><subject>Hebbian learning</subject><subject>pulse neural network</subject><issn>0424-7760</issn><issn>1520-6416</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNqFkEFLw0AQhRdRsFYP_oOcBA-xs7tJNjlKqa0SFEXR27JJJnXbNKm7CbX_3m2j3sTTm3l8bxgeIecUrigAGyEu3MADfkAGNGTgRwGNDskAAhb4QkRwTE6sXQCAoCIekMcZZplWtVehMrWu557pKvQM2tYovTdy1Sq3Net3nXtlY-bYtjtf1966qyx6NXZGVU7aTWOWp-SoVM4--9YhebmZPI9nfvowvR1fp34ecOA-YhYC5rxUeVFwASLJYoAkoHFCFRclZXGRqByzhGEW0TCiSpWMZaGAkkJW8CG56O-uTfPRuX_lStscq0rV2HRW8iCJXQ_8X5BRGkQiZg687MHcNNYaLOXa6JUyW0lB7tqVrl25b9exo57d6Aq3f4NyMrn7Sfh9QtsWP38TyixlJLgI5ev9VM5SeKPpE5ch_wKmQouo</recordid><startdate>200505</startdate><enddate>200505</enddate><creator>Motoki, Makoto</creator><creator>Hamagami, Tomoki</creator><creator>Koakutsu, Seiichi</creator><creator>Hirata, Hironori</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope><scope>7SP</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>L7M</scope></search><sort><creationdate>200505</creationdate><title>Hebbian learning rule restraining catastrophic forgetting in pulse neural network</title><author>Motoki, Makoto ; Hamagami, Tomoki ; Koakutsu, Seiichi ; Hirata, Hironori</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4303-eeb50ec3facdd37079b800941891a37f128d9aceb92eb61561aaf22b570f10bd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>catastrophic forgetting</topic><topic>Hebbian learning</topic><topic>pulse neural network</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Motoki, Makoto</creatorcontrib><creatorcontrib>Hamagami, Tomoki</creatorcontrib><creatorcontrib>Koakutsu, Seiichi</creatorcontrib><creatorcontrib>Hirata, Hironori</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Electrical engineering in Japan</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Motoki, Makoto</au><au>Hamagami, Tomoki</au><au>Koakutsu, Seiichi</au><au>Hirata, Hironori</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hebbian learning rule restraining catastrophic forgetting in pulse neural network</atitle><jtitle>Electrical engineering in Japan</jtitle><addtitle>Elect. Eng. Jpn</addtitle><date>2005-05</date><risdate>2005</risdate><volume>151</volume><issue>3</issue><spage>50</spage><epage>60</epage><pages>50-60</pages><issn>0424-7760</issn><eissn>1520-6416</eissn><abstract>In this paper, a Hebbian learning rule restraining “catastrophic forgetting” is proposed on a pulsed neural network (PNN) with leaky integrate‐and‐fire neurons. The strong point of this learning rule is that a learning of new pattern does not destroy past ones, and that an efficient use of synapses is enabled. First, in order to consider the function of the learning rule, a fundamental experiment is carried out. Next, to compare the performance between the proposed learning rule and conventional ones on the application, simulation experiments are examined using autonomous behavior robots which are forced to learn concurrently two different environments. The results of the experiments show that the proposed learning rule clearly restrains “catastrophic forgetting” and enables working of more efficient than conventional PNN learning. © 2005 Wiley Periodicals, Inc. Electr Eng Jpn, 151(3): 50–60, 2005; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/eej.10343</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><doi>10.1002/eej.10343</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0424-7760 |
ispartof | Electrical engineering in Japan, 2005-05, Vol.151 (3), p.50-60 |
issn | 0424-7760 1520-6416 |
language | eng |
recordid | cdi_proquest_miscellaneous_34983433 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | catastrophic forgetting Hebbian learning pulse neural network |
title | Hebbian learning rule restraining catastrophic forgetting in pulse neural network |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T04%3A53%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hebbian%20learning%20rule%20restraining%20catastrophic%20forgetting%20in%20pulse%20neural%20network&rft.jtitle=Electrical%20engineering%20in%20Japan&rft.au=Motoki,%20Makoto&rft.date=2005-05&rft.volume=151&rft.issue=3&rft.spage=50&rft.epage=60&rft.pages=50-60&rft.issn=0424-7760&rft.eissn=1520-6416&rft_id=info:doi/10.1002/eej.10343&rft_dat=%3Cproquest_cross%3E21146782%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4303-eeb50ec3facdd37079b800941891a37f128d9aceb92eb61561aaf22b570f10bd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=21146782&rft_id=info:pmid/&rfr_iscdi=true |