Loading…

Low-mode internal tide generation by topography: an experimental and numerical investigation

We analyse the low-mode structure of internal tides generated in laboratory experiments and numerical simulations by a two-dimensional ridge in a channel of finite depth. The height of the ridge is approximately half of the channel depth and the regimes considered span sub- to supercritical topograp...

Full description

Saved in:
Bibliographic Details
Published in:Journal of fluid mechanics 2009-10, Vol.636, p.91-108
Main Authors: ECHEVERRI, PAULA, FLYNN, M. R., WINTERS, KRAIG B., PEACOCK, THOMAS
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We analyse the low-mode structure of internal tides generated in laboratory experiments and numerical simulations by a two-dimensional ridge in a channel of finite depth. The height of the ridge is approximately half of the channel depth and the regimes considered span sub- to supercritical topography. For small tidal excursions, of the order of 1% of the topographic width, our results agree well with linear theory. For larger tidal excursions, up to 15% of the topographic width, we find that the scaled mode 1 conversion rate decreases by less than 15%, in spite of nonlinear phenomena that break down the familiar wave-beam structure and generate harmonics and inter-harmonics. Modes two and three, however, are more strongly affected. For this topographic configuration, most of the linear baroclinic energy flux is associated with the mode 1 tide, so our experiments reveal that nonlinear behaviour does not significantly affect the barotropic to baroclinic energy conversion in this regime, which is relevant to large-scale ocean ridges. This may not be the case, however, for smaller scale ridges that generate a response dominated by higher modes.
ISSN:0022-1120
1469-7645
DOI:10.1017/S0022112009007654