Loading…

Multivariate analysis of trace element concentrations in atmospheric deposition in the Yangtze River Delta, East China

The Yangtze River Delta (YRD), one of the fastest developing regions in China, was investigated for its trace element concentrations. Forty-three samples of atmospheric deposition were analyzed for their concentrations of thirteen elements, As, Cd, Cr, Cu, Fe, Hg, Mn, Mo, Ni, Pb, Se, S and Zn. The r...

Full description

Saved in:
Bibliographic Details
Published in:Atmospheric environment (1994) 2009-11, Vol.43 (36), p.5781-5790
Main Authors: Huang, Shunsheng, Tu, Jun, Liu, Hongying, Hua, Ming, Liao, Qilin, Feng, Jinshun, Weng, Zhihua, Huang, Guangming
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The Yangtze River Delta (YRD), one of the fastest developing regions in China, was investigated for its trace element concentrations. Forty-three samples of atmospheric deposition were analyzed for their concentrations of thirteen elements, As, Cd, Cr, Cu, Fe, Hg, Mn, Mo, Ni, Pb, Se, S and Zn. The results show that, in comparison with Chinese soil, the atmospheric deposition in the YRD generally has elevated trace element concentrations, except for Fe and Mn. The current atmospheric deposition of Cd, Cr, Cu, Pb and Zn in the YRD is significantly higher than the results from previous studies in other regions around the world. Four main sources of the trace elements were identified using statistical techniques including descriptive, correlation, and multivariate analyses, such as principal component analysis (PCA) and cluster analysis (CA). The four sources and associated cluster elements are: (1) road traffic emissions contributing As, Hg, Cu, Cd, Mo, S and Zn; (2) pyrometallurgical processes associated with Cr and Ni; (3) resuspension of soil particles contributing Fe and Mn; (4) coal combustion associated with Pb and Se. The four major sources were further verified by enrichment factor (EF) calculation and spatial analysis. Spatial distributions of four factor scores and EFs of elements show that high scores and EFs of trace metals (As, Hg, Cu, Cd, Mo, S and Zn) are mostly concentrated in the sites with high traffic conditions, and high scores of Fe and Mn are found at rural sites associated with high impact of soil particles resuspension, while Cr and Ni are higher in the area with long history of alloy machining.
ISSN:1352-2310
1873-2844
DOI:10.1016/j.atmosenv.2009.07.055