Loading…

IM7/LARC™-IAX-3 Polyimide Composites

LARC™-IAX-3 (Langley Research Center™-improved adhesive experimental resin-3) aromatic polyimide, based on oxydiphthalic anhydride, 3,′4-oxydianiline (3,′4-ODA) and 1,4-phenylenediamine ( p-PDA), was evaluated as a matrix for high-performance composites. Four poly(amide acid) solutions in either N-m...

Full description

Saved in:
Bibliographic Details
Published in:High performance polymers 1998-06, Vol.10 (2), p.193-206
Main Authors: Hou, T H, St Clair, T L
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:LARC™-IAX-3 (Langley Research Center™-improved adhesive experimental resin-3) aromatic polyimide, based on oxydiphthalic anhydride, 3,′4-oxydianiline (3,′4-ODA) and 1,4-phenylenediamine ( p-PDA), was evaluated as a matrix for high-performance composites. Four poly(amide acid) solutions in either N-methypyrrolidone or γ-butyrolactone, end-capped with phthalic anhydride to various theoretical molecular weights, were synthesized. Unidirectional prepreg was fabricated from each of the four resins utilizing NASA-Langley’s multipurpose prepreg machine. The temperature-dependent volatile depletion rates, the thermal crystallization behaviour and the resin rheology were characterized. Based on this information, a composite moulding cycle was developed which consistently yielded well consolidated void-free laminate parts. Composite mechanical properties such as short beam shear strength, longitudinal and transverse flexural strength and flexural modulus, longitudinal tensile strength and notched and unnotched compression strengths were measured at room temperature (RT) and elevated temperatures. Similar properties were obtained independent of the carrier solvent used during matrix resin synthesis. These mechanical properties were superior to those previously measured for IM7/LARC™-IA and IM7/LARC™-IAX composites. The enhanced mechanical properties were attributed to the substitution of 25% 3,′4-ODA by p-PDA in the LARC™-IA imide backbones.
ISSN:0954-0083
1361-6412
DOI:10.1088/0954-0083/10/2/004