Loading…

Analyzing the design and management of biomass-to-biorefinery supply chain

Bioenergy has been recognized as an important source of energy that will reduce nation’s dependency on petroleum, and have a positive impact on the economy, environment, and society. Production of bioenergy is expected to increase. As a result, we foresee an increase in the number of biorefineries i...

Full description

Saved in:
Bibliographic Details
Published in:Computers & industrial engineering 2009-11, Vol.57 (4), p.1342-1352
Main Authors: Ekşioğlu, Sandra D., Acharya, Ambarish, Leightley, Liam E., Arora, Sumesh
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Bioenergy has been recognized as an important source of energy that will reduce nation’s dependency on petroleum, and have a positive impact on the economy, environment, and society. Production of bioenergy is expected to increase. As a result, we foresee an increase in the number of biorefineries in the near future. This paper analyzes logistical challenges with supplying biomass to a biorefinery. We also propose a mathematical model that can be used to design the supply chain and manage the logistics of a biorefinery. Supply chain-design decisions are long-term type of decisions; while logistics management involves medium to short-term decisions. The proposed model coordinates these decisions. The model determines the number, size and location of biorefineries needed to produce biofuel using the available biomass. The model also determines the amount of biomass shipped, processed and inventoried during a time period. Inputs to the model are the availability of biomass feedstock, as well as biomass transportation, inventory and processing costs. We use the State of Mississippi as the testing ground of this model.
ISSN:0360-8352
1879-0550
DOI:10.1016/j.cie.2009.07.003