Loading…

Application of three-dimensional dislocation dynamics simulation to the STI semiconductor structure

As the size of semiconductor devices continues to shrink, the control of dislocation nucleation is becoming a severe problem due to high accumulated stress. In this paper, we propose a method to infer the initiation points and slip systems of nucleated dislocations through a combination of TEM obser...

Full description

Saved in:
Bibliographic Details
Published in:Materials science & engineering. A, Structural materials : properties, microstructure and processing Structural materials : properties, microstructure and processing, 2005-03, Vol.395 (1), p.62-69
Main Authors: Izumi, S., Miyake, T., Sakai, S., Ohta, H.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c458t-e0f061471b81ef6db6acb20df8f1b1f673d8208b8ef188caf5c7cc735fa27b2e3
cites cdi_FETCH-LOGICAL-c458t-e0f061471b81ef6db6acb20df8f1b1f673d8208b8ef188caf5c7cc735fa27b2e3
container_end_page 69
container_issue 1
container_start_page 62
container_title Materials science & engineering. A, Structural materials : properties, microstructure and processing
container_volume 395
creator Izumi, S.
Miyake, T.
Sakai, S.
Ohta, H.
description As the size of semiconductor devices continues to shrink, the control of dislocation nucleation is becoming a severe problem due to high accumulated stress. In this paper, we propose a method to infer the initiation points and slip systems of nucleated dislocations through a combination of TEM observation and dislocation dynamics simulation based on FEM calculation. In order to reproduce the behaviors of dislocations on the nanometer scale, we adopted the core splitting concept first proposed by Brown and employed by Schwarz. We applied our method to a shallow trench isolation (STI) structure. The initiation points and slip systems of four kinds of nucleated dislocations can be detected. It is found that the line tension of the dislocation strongly affects the loop’s final shape, unlike the macroscopic dislocations observed in wafer slip.
doi_str_mv 10.1016/j.msea.2004.12.001
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_35021729</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0921509304014005</els_id><sourcerecordid>35021729</sourcerecordid><originalsourceid>FETCH-LOGICAL-c458t-e0f061471b81ef6db6acb20df8f1b1f673d8208b8ef188caf5c7cc735fa27b2e3</originalsourceid><addsrcrecordid>eNqFkE1r3DAQhkVpodu0f6AnX9KbXY38JUMuIaRtINBD07OQRyOixbY2GruQfx8tu5Bbepph9Lyv4BHiK8gKJHTf99XMZCslZVOBqqSEd2IHuq_LZqi792InBwVlK4f6o_jEvJeZaGS7E3h9OEwB7RriUkRfrI-JqHRhpoXzyU6FCzzFM-CeFzsH5ILDvE2n2xpziIo_D3cFU36Mi9twjangNeVlS_RZfPB2Yvpynhfi74_bh5tf5f3vn3c31_clNq1eS5JedtD0MGog37mxszgq6bz2MILv-tppJfWoyYPWaH2LPWJft96qflRUX4hvp95Dik8b8WrmwEjTZBeKG5u6lQp6NfwXVLodOgCVQXUCMUXmRN4cUphtejYgzVG82ZujeHMUb0CZrDWHLs_tltFOPtkFA78mu3boB30svzpxlJ38C5QMY6AFyYVEuBoXw1vfvAB-4JvN</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28596112</pqid></control><display><type>article</type><title>Application of three-dimensional dislocation dynamics simulation to the STI semiconductor structure</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Izumi, S. ; Miyake, T. ; Sakai, S. ; Ohta, H.</creator><creatorcontrib>Izumi, S. ; Miyake, T. ; Sakai, S. ; Ohta, H.</creatorcontrib><description>As the size of semiconductor devices continues to shrink, the control of dislocation nucleation is becoming a severe problem due to high accumulated stress. In this paper, we propose a method to infer the initiation points and slip systems of nucleated dislocations through a combination of TEM observation and dislocation dynamics simulation based on FEM calculation. In order to reproduce the behaviors of dislocations on the nanometer scale, we adopted the core splitting concept first proposed by Brown and employed by Schwarz. We applied our method to a shallow trench isolation (STI) structure. The initiation points and slip systems of four kinds of nucleated dislocations can be detected. It is found that the line tension of the dislocation strongly affects the loop’s final shape, unlike the macroscopic dislocations observed in wafer slip.</description><identifier>ISSN: 0921-5093</identifier><identifier>EISSN: 1873-4936</identifier><identifier>DOI: 10.1016/j.msea.2004.12.001</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Computational mechanics ; Condensed matter: structure, mechanical and thermal properties ; Defects and impurities in crystals; microstructure ; Dislocation dynamics ; Exact sciences and technology ; Linear defects: dislocations, disclinations ; Physics ; Process simulations ; Semiconductor devices ; Silicon ; Structure of solids and liquids; crystallography</subject><ispartof>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing, 2005-03, Vol.395 (1), p.62-69</ispartof><rights>2005 Elsevier B.V.</rights><rights>2005 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c458t-e0f061471b81ef6db6acb20df8f1b1f673d8208b8ef188caf5c7cc735fa27b2e3</citedby><cites>FETCH-LOGICAL-c458t-e0f061471b81ef6db6acb20df8f1b1f673d8208b8ef188caf5c7cc735fa27b2e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=16597982$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Izumi, S.</creatorcontrib><creatorcontrib>Miyake, T.</creatorcontrib><creatorcontrib>Sakai, S.</creatorcontrib><creatorcontrib>Ohta, H.</creatorcontrib><title>Application of three-dimensional dislocation dynamics simulation to the STI semiconductor structure</title><title>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing</title><description>As the size of semiconductor devices continues to shrink, the control of dislocation nucleation is becoming a severe problem due to high accumulated stress. In this paper, we propose a method to infer the initiation points and slip systems of nucleated dislocations through a combination of TEM observation and dislocation dynamics simulation based on FEM calculation. In order to reproduce the behaviors of dislocations on the nanometer scale, we adopted the core splitting concept first proposed by Brown and employed by Schwarz. We applied our method to a shallow trench isolation (STI) structure. The initiation points and slip systems of four kinds of nucleated dislocations can be detected. It is found that the line tension of the dislocation strongly affects the loop’s final shape, unlike the macroscopic dislocations observed in wafer slip.</description><subject>Computational mechanics</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Defects and impurities in crystals; microstructure</subject><subject>Dislocation dynamics</subject><subject>Exact sciences and technology</subject><subject>Linear defects: dislocations, disclinations</subject><subject>Physics</subject><subject>Process simulations</subject><subject>Semiconductor devices</subject><subject>Silicon</subject><subject>Structure of solids and liquids; crystallography</subject><issn>0921-5093</issn><issn>1873-4936</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNqFkE1r3DAQhkVpodu0f6AnX9KbXY38JUMuIaRtINBD07OQRyOixbY2GruQfx8tu5Bbepph9Lyv4BHiK8gKJHTf99XMZCslZVOBqqSEd2IHuq_LZqi792InBwVlK4f6o_jEvJeZaGS7E3h9OEwB7RriUkRfrI-JqHRhpoXzyU6FCzzFM-CeFzsH5ILDvE2n2xpziIo_D3cFU36Mi9twjangNeVlS_RZfPB2Yvpynhfi74_bh5tf5f3vn3c31_clNq1eS5JedtD0MGog37mxszgq6bz2MILv-tppJfWoyYPWaH2LPWJft96qflRUX4hvp95Dik8b8WrmwEjTZBeKG5u6lQp6NfwXVLodOgCVQXUCMUXmRN4cUphtejYgzVG82ZujeHMUb0CZrDWHLs_tltFOPtkFA78mu3boB30svzpxlJ38C5QMY6AFyYVEuBoXw1vfvAB-4JvN</recordid><startdate>20050325</startdate><enddate>20050325</enddate><creator>Izumi, S.</creator><creator>Miyake, T.</creator><creator>Sakai, S.</creator><creator>Ohta, H.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7SR</scope></search><sort><creationdate>20050325</creationdate><title>Application of three-dimensional dislocation dynamics simulation to the STI semiconductor structure</title><author>Izumi, S. ; Miyake, T. ; Sakai, S. ; Ohta, H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c458t-e0f061471b81ef6db6acb20df8f1b1f673d8208b8ef188caf5c7cc735fa27b2e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Computational mechanics</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Defects and impurities in crystals; microstructure</topic><topic>Dislocation dynamics</topic><topic>Exact sciences and technology</topic><topic>Linear defects: dislocations, disclinations</topic><topic>Physics</topic><topic>Process simulations</topic><topic>Semiconductor devices</topic><topic>Silicon</topic><topic>Structure of solids and liquids; crystallography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Izumi, S.</creatorcontrib><creatorcontrib>Miyake, T.</creatorcontrib><creatorcontrib>Sakai, S.</creatorcontrib><creatorcontrib>Ohta, H.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Engineered Materials Abstracts</collection><jtitle>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Izumi, S.</au><au>Miyake, T.</au><au>Sakai, S.</au><au>Ohta, H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Application of three-dimensional dislocation dynamics simulation to the STI semiconductor structure</atitle><jtitle>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing</jtitle><date>2005-03-25</date><risdate>2005</risdate><volume>395</volume><issue>1</issue><spage>62</spage><epage>69</epage><pages>62-69</pages><issn>0921-5093</issn><eissn>1873-4936</eissn><abstract>As the size of semiconductor devices continues to shrink, the control of dislocation nucleation is becoming a severe problem due to high accumulated stress. In this paper, we propose a method to infer the initiation points and slip systems of nucleated dislocations through a combination of TEM observation and dislocation dynamics simulation based on FEM calculation. In order to reproduce the behaviors of dislocations on the nanometer scale, we adopted the core splitting concept first proposed by Brown and employed by Schwarz. We applied our method to a shallow trench isolation (STI) structure. The initiation points and slip systems of four kinds of nucleated dislocations can be detected. It is found that the line tension of the dislocation strongly affects the loop’s final shape, unlike the macroscopic dislocations observed in wafer slip.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.msea.2004.12.001</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0921-5093
ispartof Materials science & engineering. A, Structural materials : properties, microstructure and processing, 2005-03, Vol.395 (1), p.62-69
issn 0921-5093
1873-4936
language eng
recordid cdi_proquest_miscellaneous_35021729
source ScienceDirect Freedom Collection 2022-2024
subjects Computational mechanics
Condensed matter: structure, mechanical and thermal properties
Defects and impurities in crystals
microstructure
Dislocation dynamics
Exact sciences and technology
Linear defects: dislocations, disclinations
Physics
Process simulations
Semiconductor devices
Silicon
Structure of solids and liquids
crystallography
title Application of three-dimensional dislocation dynamics simulation to the STI semiconductor structure
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T09%3A36%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Application%20of%20three-dimensional%20dislocation%20dynamics%20simulation%20to%20the%20STI%20semiconductor%20structure&rft.jtitle=Materials%20science%20&%20engineering.%20A,%20Structural%20materials%20:%20properties,%20microstructure%20and%20processing&rft.au=Izumi,%20S.&rft.date=2005-03-25&rft.volume=395&rft.issue=1&rft.spage=62&rft.epage=69&rft.pages=62-69&rft.issn=0921-5093&rft.eissn=1873-4936&rft_id=info:doi/10.1016/j.msea.2004.12.001&rft_dat=%3Cproquest_cross%3E35021729%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c458t-e0f061471b81ef6db6acb20df8f1b1f673d8208b8ef188caf5c7cc735fa27b2e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=28596112&rft_id=info:pmid/&rfr_iscdi=true