Loading…
Prediction of Young’s modulus of graphene sheets and carbon nanotubes using nanoscale continuum mechanics approach
Analytical formulations are presented to predict the elastic moduli of graphene sheets and carbon nanotubes using a linkage between lattice molecular structure and equivalent discrete frame structure. The obtained results for a graphene sheet show an isotropic behavior, in contrast to limited molecu...
Saved in:
Published in: | Materials in engineering 2010-02, Vol.31 (2), p.790-795 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Analytical formulations are presented to predict the elastic moduli of graphene sheets and carbon nanotubes using a linkage between lattice molecular structure and equivalent discrete frame structure. The obtained results for a graphene sheet show an isotropic behavior, in contrast to limited molecular dynamic simulations. Young’s modulus of CNT represents a high dependency of stiffness on tube thickness, while dependency on tube diameter is more tangible for smaller tube diameters. The presented closed-form solution provides an insight to evaluate finite element models constructed by beam elements. The results are in a good agreement with published data and experimental results. |
---|---|
ISSN: | 0261-3069 |
DOI: | 10.1016/j.matdes.2009.07.058 |