Loading…

Structural evolution of the Orange Basin gravity-driven system, offshore Namibia

The Orange Basin records the development of the Late Jurassic to present day volcanic-rifted passive margin of Namibia. Regional extension is recorded by a Late Jurassic to Lower Cretaceous Syn-rift Megasequence, which is separated from a Cretaceous to present day post-rift Megasequence by the Late...

Full description

Saved in:
Bibliographic Details
Published in:Marine and petroleum geology 2010, Vol.27 (1), p.223-237
Main Authors: de Vera, Jose, Granado, Pablo, McClay, Ken
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The Orange Basin records the development of the Late Jurassic to present day volcanic-rifted passive margin of Namibia. Regional extension is recorded by a Late Jurassic to Lower Cretaceous Syn-rift Megasequence, which is separated from a Cretaceous to present day post-rift Megasequence by the Late Hauterivian (ca. 130 Ma) break-up unconformity. The Late Cretaceous Post-rift evolution of the basin is characterized by episodic gravitational collapse of the margin. Gravitational collapse is recorded as a series of shale-detached gravity slide systems, consisting of an up-dip extensional domain that is linked to a down-dip zone of contraction domain along a thin basal detachment of Turonian age. The extensional domain is characterized by basinward-dipping listric faults that sole into the basal detachment. The contractional domain consists of landward-dipping listric faults and strongly asymmetric basinward-verging thrust-related folds. Growth stratal patterns suggest that the gravitational collapse of the margin was short-lived, spanning from the Coniacian (ca. 90 Ma) to the Santonian (ca. 83 Ma). Structural restorations of the main gravity-driven system show a lack of balance between up-dip extension (24 km) and down-dip shortening (16 km). Gravity sliding in the Namibian margin is interpreted to have occurred as a series of episodic short-lived gravity sliding between the Cenomanian (ca. 100 Ma) and the Campanian (ca. 80 Ma). Gravity sliding and spreading are interpreted to be the result of episodic cratonic uplift combined with differential thermal subsidence. Sliding may have also been favoured by the presence of an efficient detachment layer in Turonian source rocks.
ISSN:0264-8172
1873-4073
DOI:10.1016/j.marpetgeo.2009.02.003