Loading…

Biogeochemical and hydrographic controls on chromophoric dissolved organic matter distribution in the Pacific Ocean

Recent in situ observations of chromophoric dissolved organic material (CDOM) in the Pacific Ocean reveal the biogeochemical controls on CDOM and indicate predictive potential for open-ocean CDOM in diagnosing particulate organic matter (POM) remineralization rates within ocean basins. Relationships...

Full description

Saved in:
Bibliographic Details
Published in:Deep-sea research. Part I, Oceanographic research papers Oceanographic research papers, 2009-12, Vol.56 (12), p.2175-2192
Main Authors: Swan, Chantal M., Siegel, David A., Nelson, Norman B., Carlson, Craig A., Nasir, Elora
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Recent in situ observations of chromophoric dissolved organic material (CDOM) in the Pacific Ocean reveal the biogeochemical controls on CDOM and indicate predictive potential for open-ocean CDOM in diagnosing particulate organic matter (POM) remineralization rates within ocean basins. Relationships between CDOM and concentrations of dissolved oxygen, nutrients and inorganic carbon in the subthermocline waters of the Pacific reflect the relative influences of water mass ventilation and water-column oxidative remineralization. Apparent in situ oxygen utilization (AOU) accounts for 86% and 61% of variance in CDOM abundance, respectively, in Antarctic Intermediate Water and North Pacific Intermediate Water. In the deep waters of the Pacific below the zone of remineralization, AOU explains 26% of CDOM variability. The AOU–CDOM relationship results from competing biogeochemical and advective processes within the ocean interior. Dissolved organic carbon (DOC) is not statistically linked to the CDOM or AOU distributions, indicating that the majority of CDOM production occurs during the remineralization of sinking POM and thus potentially provides key information about carbon export. Once formed in the ocean interior, CDOM is relatively stable until it reaches the surface ocean where it is destroyed by solar bleaching. Susceptibility to bleaching confers an additional tracer-like quality for CDOM in water masses with active convection, such as mode waters that appear as subsurface CDOM minima. In the surface ocean, atypically low CDOM abundance highlights a region of unusually extreme oligotrophy: the subtropical South Pacific gyre. For these hyper-oligotrophic waters, the present CDOM observations are consistent with analysis of in situ radiometric observations of light attenuation and reflectance, demonstrating the accuracy of the CDOM spectrophotometric observations. Overall, we illustrate how CDOM abundance in the ocean interior can potentially diagnose rates of thermohaline overturning as they affect regional biogeochemistry and export. We further show how relative surface ocean CDOM abundances are driven in large part by processes occurring in the deep layers of the ocean. This is particularly significant for the interpretation of the global surface distribution of CDOM using satellite remote sensing.
ISSN:0967-0637
1879-0119
DOI:10.1016/j.dsr.2009.09.002