Loading…
Comparison of two sets of first-order conditions as bases of interior-point Newton methods for optimization with simple bounds
In this paper, we compare the behavior of two Newton interior-point methods derived from two different first-order necessary conditions for the same nonlinear optimization problem with simple bounds. One set of conditions was proposed by Coleman and Li; the other is the standard KKT set of condition...
Saved in:
Published in: | Journal of optimization theory and applications 2002-04, Vol.113 (1), p.21-40 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c368t-871198b3dedf93aaabec093a3e7242e4ceb672348282b3b66d0b8c5eadd3f7e83 |
---|---|
cites | cdi_FETCH-LOGICAL-c368t-871198b3dedf93aaabec093a3e7242e4ceb672348282b3b66d0b8c5eadd3f7e83 |
container_end_page | 40 |
container_issue | 1 |
container_start_page | 21 |
container_title | Journal of optimization theory and applications |
container_volume | 113 |
creator | JAMROG, D. C TAPIA, R. A ZHANG, Y |
description | In this paper, we compare the behavior of two Newton interior-point methods derived from two different first-order necessary conditions for the same nonlinear optimization problem with simple bounds. One set of conditions was proposed by Coleman and Li; the other is the standard KKT set of conditions. We discuss a perturbation of the CL conditions for problems with one-sided bounds and the difficulties involved in extending this to problems with general bounds. We study the numerical behavior of the Newton method applied to the systems of equations associated with the unperturbed and perturbed necessary conditions. Preliminary numerical results for convex quadratic objective functions indicate that, for this class of problems, the Newton method based on the perturbed KKT formulation appears to be the more robust. |
doi_str_mv | 10.1023/A:1014801112646 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_35112364</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>35112364</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-871198b3dedf93aaabec093a3e7242e4ceb672348282b3b66d0b8c5eadd3f7e83</originalsourceid><addsrcrecordid>eNpdkUFv1DAQhS1EJZbCmauFBLe0tifrONxWqxYqVXAp58ixJ6qrJBM8Xq3gwG9vllZCcJp3-N7T0zwh3ml1oZWBy90nrXTtlNba2Nq-EBu9baAyrnEvxUYpYyow0L4Sr5kflFKta-qN-L2nafE5Mc2SBlmOJBkLn_SQMpeKcsQsA80xlUQzS8-y94x_kDQXzIlytdAq5Vc8ljVnwnJPkeVAWdJS0pR--ZNXHlO5l5ymZUTZ02GO_EacDX5kfPt8z8X366u7_Zfq9tvnm_3utgpgXalco3XreogYhxa89z0GtQrAxtQG64C9bQzUzjjTQ29tVL0LW_QxwtCgg3Px8Sl3yfTjgFy6KXHAcfQz0oE72K5fA1uv4Pv_wAc65Hnt1unWWu0AmhW6fIJCJuaMQ7fkNPn8s9OqO43R7bp_xlgdH55jPQc_DtnPIfFfW20sKK3gEdzei68</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>196618337</pqid></control><display><type>article</type><title>Comparison of two sets of first-order conditions as bases of interior-point Newton methods for optimization with simple bounds</title><source>ABI/INFORM Global (ProQuest)</source><source>Springer Nature</source><creator>JAMROG, D. C ; TAPIA, R. A ; ZHANG, Y</creator><creatorcontrib>JAMROG, D. C ; TAPIA, R. A ; ZHANG, Y</creatorcontrib><description>In this paper, we compare the behavior of two Newton interior-point methods derived from two different first-order necessary conditions for the same nonlinear optimization problem with simple bounds. One set of conditions was proposed by Coleman and Li; the other is the standard KKT set of conditions. We discuss a perturbation of the CL conditions for problems with one-sided bounds and the difficulties involved in extending this to problems with general bounds. We study the numerical behavior of the Newton method applied to the systems of equations associated with the unperturbed and perturbed necessary conditions. Preliminary numerical results for convex quadratic objective functions indicate that, for this class of problems, the Newton method based on the perturbed KKT formulation appears to be the more robust.</description><identifier>ISSN: 0022-3239</identifier><identifier>EISSN: 1573-2878</identifier><identifier>DOI: 10.1023/A:1014801112646</identifier><identifier>CODEN: JOTABN</identifier><language>eng</language><publisher>New York, NY: Springer</publisher><subject>Algorithms ; Applied mathematics ; Applied sciences ; Exact sciences and technology ; Lagrange multiplier ; Methods ; Operational research and scientific management ; Operational research. Management science ; Optimization ; Optimization. Search problems</subject><ispartof>Journal of optimization theory and applications, 2002-04, Vol.113 (1), p.21-40</ispartof><rights>Plenum Publishing Corporation 2002</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-871198b3dedf93aaabec093a3e7242e4ceb672348282b3b66d0b8c5eadd3f7e83</citedby><cites>FETCH-LOGICAL-c368t-871198b3dedf93aaabec093a3e7242e4ceb672348282b3b66d0b8c5eadd3f7e83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/196618337/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/196618337?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,11686,27922,27923,36058,36059,44361,74665</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=14263010$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>JAMROG, D. C</creatorcontrib><creatorcontrib>TAPIA, R. A</creatorcontrib><creatorcontrib>ZHANG, Y</creatorcontrib><title>Comparison of two sets of first-order conditions as bases of interior-point Newton methods for optimization with simple bounds</title><title>Journal of optimization theory and applications</title><description>In this paper, we compare the behavior of two Newton interior-point methods derived from two different first-order necessary conditions for the same nonlinear optimization problem with simple bounds. One set of conditions was proposed by Coleman and Li; the other is the standard KKT set of conditions. We discuss a perturbation of the CL conditions for problems with one-sided bounds and the difficulties involved in extending this to problems with general bounds. We study the numerical behavior of the Newton method applied to the systems of equations associated with the unperturbed and perturbed necessary conditions. Preliminary numerical results for convex quadratic objective functions indicate that, for this class of problems, the Newton method based on the perturbed KKT formulation appears to be the more robust.</description><subject>Algorithms</subject><subject>Applied mathematics</subject><subject>Applied sciences</subject><subject>Exact sciences and technology</subject><subject>Lagrange multiplier</subject><subject>Methods</subject><subject>Operational research and scientific management</subject><subject>Operational research. Management science</subject><subject>Optimization</subject><subject>Optimization. Search problems</subject><issn>0022-3239</issn><issn>1573-2878</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNpdkUFv1DAQhS1EJZbCmauFBLe0tifrONxWqxYqVXAp58ixJ6qrJBM8Xq3gwG9vllZCcJp3-N7T0zwh3ml1oZWBy90nrXTtlNba2Nq-EBu9baAyrnEvxUYpYyow0L4Sr5kflFKta-qN-L2nafE5Mc2SBlmOJBkLn_SQMpeKcsQsA80xlUQzS8-y94x_kDQXzIlytdAq5Vc8ljVnwnJPkeVAWdJS0pR--ZNXHlO5l5ymZUTZ02GO_EacDX5kfPt8z8X366u7_Zfq9tvnm_3utgpgXalco3XreogYhxa89z0GtQrAxtQG64C9bQzUzjjTQ29tVL0LW_QxwtCgg3Px8Sl3yfTjgFy6KXHAcfQz0oE72K5fA1uv4Pv_wAc65Hnt1unWWu0AmhW6fIJCJuaMQ7fkNPn8s9OqO43R7bp_xlgdH55jPQc_DtnPIfFfW20sKK3gEdzei68</recordid><startdate>20020401</startdate><enddate>20020401</enddate><creator>JAMROG, D. C</creator><creator>TAPIA, R. A</creator><creator>ZHANG, Y</creator><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KR7</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20020401</creationdate><title>Comparison of two sets of first-order conditions as bases of interior-point Newton methods for optimization with simple bounds</title><author>JAMROG, D. C ; TAPIA, R. A ; ZHANG, Y</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-871198b3dedf93aaabec093a3e7242e4ceb672348282b3b66d0b8c5eadd3f7e83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Algorithms</topic><topic>Applied mathematics</topic><topic>Applied sciences</topic><topic>Exact sciences and technology</topic><topic>Lagrange multiplier</topic><topic>Methods</topic><topic>Operational research and scientific management</topic><topic>Operational research. Management science</topic><topic>Optimization</topic><topic>Optimization. Search problems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>JAMROG, D. C</creatorcontrib><creatorcontrib>TAPIA, R. A</creatorcontrib><creatorcontrib>ZHANG, Y</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global (ProQuest)</collection><collection>Proquest Research Library</collection><collection>ProQuest Science Journals</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of optimization theory and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>JAMROG, D. C</au><au>TAPIA, R. A</au><au>ZHANG, Y</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparison of two sets of first-order conditions as bases of interior-point Newton methods for optimization with simple bounds</atitle><jtitle>Journal of optimization theory and applications</jtitle><date>2002-04-01</date><risdate>2002</risdate><volume>113</volume><issue>1</issue><spage>21</spage><epage>40</epage><pages>21-40</pages><issn>0022-3239</issn><eissn>1573-2878</eissn><coden>JOTABN</coden><abstract>In this paper, we compare the behavior of two Newton interior-point methods derived from two different first-order necessary conditions for the same nonlinear optimization problem with simple bounds. One set of conditions was proposed by Coleman and Li; the other is the standard KKT set of conditions. We discuss a perturbation of the CL conditions for problems with one-sided bounds and the difficulties involved in extending this to problems with general bounds. We study the numerical behavior of the Newton method applied to the systems of equations associated with the unperturbed and perturbed necessary conditions. Preliminary numerical results for convex quadratic objective functions indicate that, for this class of problems, the Newton method based on the perturbed KKT formulation appears to be the more robust.</abstract><cop>New York, NY</cop><pub>Springer</pub><doi>10.1023/A:1014801112646</doi><tpages>20</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-3239 |
ispartof | Journal of optimization theory and applications, 2002-04, Vol.113 (1), p.21-40 |
issn | 0022-3239 1573-2878 |
language | eng |
recordid | cdi_proquest_miscellaneous_35112364 |
source | ABI/INFORM Global (ProQuest); Springer Nature |
subjects | Algorithms Applied mathematics Applied sciences Exact sciences and technology Lagrange multiplier Methods Operational research and scientific management Operational research. Management science Optimization Optimization. Search problems |
title | Comparison of two sets of first-order conditions as bases of interior-point Newton methods for optimization with simple bounds |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T16%3A10%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparison%20of%20two%20sets%20of%20first-order%20conditions%20as%20bases%20of%20interior-point%20Newton%20methods%20for%20optimization%20with%20simple%20bounds&rft.jtitle=Journal%20of%20optimization%20theory%20and%20applications&rft.au=JAMROG,%20D.%20C&rft.date=2002-04-01&rft.volume=113&rft.issue=1&rft.spage=21&rft.epage=40&rft.pages=21-40&rft.issn=0022-3239&rft.eissn=1573-2878&rft.coden=JOTABN&rft_id=info:doi/10.1023/A:1014801112646&rft_dat=%3Cproquest_cross%3E35112364%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c368t-871198b3dedf93aaabec093a3e7242e4ceb672348282b3b66d0b8c5eadd3f7e83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=196618337&rft_id=info:pmid/&rfr_iscdi=true |