Loading…

Comparison of two sets of first-order conditions as bases of interior-point Newton methods for optimization with simple bounds

In this paper, we compare the behavior of two Newton interior-point methods derived from two different first-order necessary conditions for the same nonlinear optimization problem with simple bounds. One set of conditions was proposed by Coleman and Li; the other is the standard KKT set of condition...

Full description

Saved in:
Bibliographic Details
Published in:Journal of optimization theory and applications 2002-04, Vol.113 (1), p.21-40
Main Authors: JAMROG, D. C, TAPIA, R. A, ZHANG, Y
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c368t-871198b3dedf93aaabec093a3e7242e4ceb672348282b3b66d0b8c5eadd3f7e83
cites cdi_FETCH-LOGICAL-c368t-871198b3dedf93aaabec093a3e7242e4ceb672348282b3b66d0b8c5eadd3f7e83
container_end_page 40
container_issue 1
container_start_page 21
container_title Journal of optimization theory and applications
container_volume 113
creator JAMROG, D. C
TAPIA, R. A
ZHANG, Y
description In this paper, we compare the behavior of two Newton interior-point methods derived from two different first-order necessary conditions for the same nonlinear optimization problem with simple bounds. One set of conditions was proposed by Coleman and Li; the other is the standard KKT set of conditions. We discuss a perturbation of the CL conditions for problems with one-sided bounds and the difficulties involved in extending this to problems with general bounds. We study the numerical behavior of the Newton method applied to the systems of equations associated with the unperturbed and perturbed necessary conditions. Preliminary numerical results for convex quadratic objective functions indicate that, for this class of problems, the Newton method based on the perturbed KKT formulation appears to be the more robust.
doi_str_mv 10.1023/A:1014801112646
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_35112364</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>35112364</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-871198b3dedf93aaabec093a3e7242e4ceb672348282b3b66d0b8c5eadd3f7e83</originalsourceid><addsrcrecordid>eNpdkUFv1DAQhS1EJZbCmauFBLe0tifrONxWqxYqVXAp58ixJ6qrJBM8Xq3gwG9vllZCcJp3-N7T0zwh3ml1oZWBy90nrXTtlNba2Nq-EBu9baAyrnEvxUYpYyow0L4Sr5kflFKta-qN-L2nafE5Mc2SBlmOJBkLn_SQMpeKcsQsA80xlUQzS8-y94x_kDQXzIlytdAq5Vc8ljVnwnJPkeVAWdJS0pR--ZNXHlO5l5ymZUTZ02GO_EacDX5kfPt8z8X366u7_Zfq9tvnm_3utgpgXalco3XreogYhxa89z0GtQrAxtQG64C9bQzUzjjTQ29tVL0LW_QxwtCgg3Px8Sl3yfTjgFy6KXHAcfQz0oE72K5fA1uv4Pv_wAc65Hnt1unWWu0AmhW6fIJCJuaMQ7fkNPn8s9OqO43R7bp_xlgdH55jPQc_DtnPIfFfW20sKK3gEdzei68</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>196618337</pqid></control><display><type>article</type><title>Comparison of two sets of first-order conditions as bases of interior-point Newton methods for optimization with simple bounds</title><source>ABI/INFORM Global (ProQuest)</source><source>Springer Nature</source><creator>JAMROG, D. C ; TAPIA, R. A ; ZHANG, Y</creator><creatorcontrib>JAMROG, D. C ; TAPIA, R. A ; ZHANG, Y</creatorcontrib><description>In this paper, we compare the behavior of two Newton interior-point methods derived from two different first-order necessary conditions for the same nonlinear optimization problem with simple bounds. One set of conditions was proposed by Coleman and Li; the other is the standard KKT set of conditions. We discuss a perturbation of the CL conditions for problems with one-sided bounds and the difficulties involved in extending this to problems with general bounds. We study the numerical behavior of the Newton method applied to the systems of equations associated with the unperturbed and perturbed necessary conditions. Preliminary numerical results for convex quadratic objective functions indicate that, for this class of problems, the Newton method based on the perturbed KKT formulation appears to be the more robust.</description><identifier>ISSN: 0022-3239</identifier><identifier>EISSN: 1573-2878</identifier><identifier>DOI: 10.1023/A:1014801112646</identifier><identifier>CODEN: JOTABN</identifier><language>eng</language><publisher>New York, NY: Springer</publisher><subject>Algorithms ; Applied mathematics ; Applied sciences ; Exact sciences and technology ; Lagrange multiplier ; Methods ; Operational research and scientific management ; Operational research. Management science ; Optimization ; Optimization. Search problems</subject><ispartof>Journal of optimization theory and applications, 2002-04, Vol.113 (1), p.21-40</ispartof><rights>Plenum Publishing Corporation 2002</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-871198b3dedf93aaabec093a3e7242e4ceb672348282b3b66d0b8c5eadd3f7e83</citedby><cites>FETCH-LOGICAL-c368t-871198b3dedf93aaabec093a3e7242e4ceb672348282b3b66d0b8c5eadd3f7e83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/196618337/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/196618337?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,11686,27922,27923,36058,36059,44361,74665</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=14263010$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>JAMROG, D. C</creatorcontrib><creatorcontrib>TAPIA, R. A</creatorcontrib><creatorcontrib>ZHANG, Y</creatorcontrib><title>Comparison of two sets of first-order conditions as bases of interior-point Newton methods for optimization with simple bounds</title><title>Journal of optimization theory and applications</title><description>In this paper, we compare the behavior of two Newton interior-point methods derived from two different first-order necessary conditions for the same nonlinear optimization problem with simple bounds. One set of conditions was proposed by Coleman and Li; the other is the standard KKT set of conditions. We discuss a perturbation of the CL conditions for problems with one-sided bounds and the difficulties involved in extending this to problems with general bounds. We study the numerical behavior of the Newton method applied to the systems of equations associated with the unperturbed and perturbed necessary conditions. Preliminary numerical results for convex quadratic objective functions indicate that, for this class of problems, the Newton method based on the perturbed KKT formulation appears to be the more robust.</description><subject>Algorithms</subject><subject>Applied mathematics</subject><subject>Applied sciences</subject><subject>Exact sciences and technology</subject><subject>Lagrange multiplier</subject><subject>Methods</subject><subject>Operational research and scientific management</subject><subject>Operational research. Management science</subject><subject>Optimization</subject><subject>Optimization. Search problems</subject><issn>0022-3239</issn><issn>1573-2878</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNpdkUFv1DAQhS1EJZbCmauFBLe0tifrONxWqxYqVXAp58ixJ6qrJBM8Xq3gwG9vllZCcJp3-N7T0zwh3ml1oZWBy90nrXTtlNba2Nq-EBu9baAyrnEvxUYpYyow0L4Sr5kflFKta-qN-L2nafE5Mc2SBlmOJBkLn_SQMpeKcsQsA80xlUQzS8-y94x_kDQXzIlytdAq5Vc8ljVnwnJPkeVAWdJS0pR--ZNXHlO5l5ymZUTZ02GO_EacDX5kfPt8z8X366u7_Zfq9tvnm_3utgpgXalco3XreogYhxa89z0GtQrAxtQG64C9bQzUzjjTQ29tVL0LW_QxwtCgg3Px8Sl3yfTjgFy6KXHAcfQz0oE72K5fA1uv4Pv_wAc65Hnt1unWWu0AmhW6fIJCJuaMQ7fkNPn8s9OqO43R7bp_xlgdH55jPQc_DtnPIfFfW20sKK3gEdzei68</recordid><startdate>20020401</startdate><enddate>20020401</enddate><creator>JAMROG, D. C</creator><creator>TAPIA, R. A</creator><creator>ZHANG, Y</creator><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KR7</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20020401</creationdate><title>Comparison of two sets of first-order conditions as bases of interior-point Newton methods for optimization with simple bounds</title><author>JAMROG, D. C ; TAPIA, R. A ; ZHANG, Y</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-871198b3dedf93aaabec093a3e7242e4ceb672348282b3b66d0b8c5eadd3f7e83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Algorithms</topic><topic>Applied mathematics</topic><topic>Applied sciences</topic><topic>Exact sciences and technology</topic><topic>Lagrange multiplier</topic><topic>Methods</topic><topic>Operational research and scientific management</topic><topic>Operational research. Management science</topic><topic>Optimization</topic><topic>Optimization. Search problems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>JAMROG, D. C</creatorcontrib><creatorcontrib>TAPIA, R. A</creatorcontrib><creatorcontrib>ZHANG, Y</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global (ProQuest)</collection><collection>Proquest Research Library</collection><collection>ProQuest Science Journals</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of optimization theory and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>JAMROG, D. C</au><au>TAPIA, R. A</au><au>ZHANG, Y</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparison of two sets of first-order conditions as bases of interior-point Newton methods for optimization with simple bounds</atitle><jtitle>Journal of optimization theory and applications</jtitle><date>2002-04-01</date><risdate>2002</risdate><volume>113</volume><issue>1</issue><spage>21</spage><epage>40</epage><pages>21-40</pages><issn>0022-3239</issn><eissn>1573-2878</eissn><coden>JOTABN</coden><abstract>In this paper, we compare the behavior of two Newton interior-point methods derived from two different first-order necessary conditions for the same nonlinear optimization problem with simple bounds. One set of conditions was proposed by Coleman and Li; the other is the standard KKT set of conditions. We discuss a perturbation of the CL conditions for problems with one-sided bounds and the difficulties involved in extending this to problems with general bounds. We study the numerical behavior of the Newton method applied to the systems of equations associated with the unperturbed and perturbed necessary conditions. Preliminary numerical results for convex quadratic objective functions indicate that, for this class of problems, the Newton method based on the perturbed KKT formulation appears to be the more robust.</abstract><cop>New York, NY</cop><pub>Springer</pub><doi>10.1023/A:1014801112646</doi><tpages>20</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-3239
ispartof Journal of optimization theory and applications, 2002-04, Vol.113 (1), p.21-40
issn 0022-3239
1573-2878
language eng
recordid cdi_proquest_miscellaneous_35112364
source ABI/INFORM Global (ProQuest); Springer Nature
subjects Algorithms
Applied mathematics
Applied sciences
Exact sciences and technology
Lagrange multiplier
Methods
Operational research and scientific management
Operational research. Management science
Optimization
Optimization. Search problems
title Comparison of two sets of first-order conditions as bases of interior-point Newton methods for optimization with simple bounds
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T16%3A10%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparison%20of%20two%20sets%20of%20first-order%20conditions%20as%20bases%20of%20interior-point%20Newton%20methods%20for%20optimization%20with%20simple%20bounds&rft.jtitle=Journal%20of%20optimization%20theory%20and%20applications&rft.au=JAMROG,%20D.%20C&rft.date=2002-04-01&rft.volume=113&rft.issue=1&rft.spage=21&rft.epage=40&rft.pages=21-40&rft.issn=0022-3239&rft.eissn=1573-2878&rft.coden=JOTABN&rft_id=info:doi/10.1023/A:1014801112646&rft_dat=%3Cproquest_cross%3E35112364%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c368t-871198b3dedf93aaabec093a3e7242e4ceb672348282b3b66d0b8c5eadd3f7e83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=196618337&rft_id=info:pmid/&rfr_iscdi=true