Loading…

Content-based retrieval of logo and trademarks in unconstrained color image databases using Color Edge Gradient Co-occurrence Histograms

In this paper, we present an algorithm that extends the Color Edge Co-occurrence Histogram (CECH) object detection scheme on compound color objects, for the retrieval of logos and trademarks in unconstrained color image databases. We introduce more accurate information to the CECH, by virtue of inco...

Full description

Saved in:
Bibliographic Details
Published in:Computer vision and image understanding 2010, Vol.114 (1), p.66-84
Main Authors: Phan, Raymond, Androutsos, Dimitrios
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c361t-7141e978cde6a4743b6bba454b8c4be68da28f48438cffc934c5f70e4b38216e3
cites cdi_FETCH-LOGICAL-c361t-7141e978cde6a4743b6bba454b8c4be68da28f48438cffc934c5f70e4b38216e3
container_end_page 84
container_issue 1
container_start_page 66
container_title Computer vision and image understanding
container_volume 114
creator Phan, Raymond
Androutsos, Dimitrios
description In this paper, we present an algorithm that extends the Color Edge Co-occurrence Histogram (CECH) object detection scheme on compound color objects, for the retrieval of logos and trademarks in unconstrained color image databases. We introduce more accurate information to the CECH, by virtue of incorporating color edge detection using vector order statistics. This produces a more accurate representation of edges in color images, as compared to the simple color pixel difference classification of edges seen with the CECH. Our proposed method is thus reliant on edge gradient information, and so we call it the Color Edge Gradient Co-occurrence Histogram (CEGCH). We also introduce a color quantization method based in the hue–saturation–value (HSV) color space, illustrating that it is a more suitable scheme of quantization for image retrieval, compared to the color quantization scheme introduced with the CECH. Experimental results demonstrate that the CEGCH and the HSV color quantization scheme is insensitive to scaling, rotation, and partial deformations, and outperforms the use of the CECH in image retrieval, with higher precision and recall. We also perform experiments on a closely related algorithm based on the Color Co-occurrence Histogram (CCH) and demonstrate that our algorithm is also superior in comparison, with higher precision and recall.
doi_str_mv 10.1016/j.cviu.2009.07.004
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_35116939</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1077314209001222</els_id><sourcerecordid>35116939</sourcerecordid><originalsourceid>FETCH-LOGICAL-c361t-7141e978cde6a4743b6bba454b8c4be68da28f48438cffc934c5f70e4b38216e3</originalsourceid><addsrcrecordid>eNp9kM9u1DAQxiMEEqX0BTj5ArcE_0ucSFzQqrRIlbhQqTfLmUxWXrJ28Tgr8QZ97DpsxZHTjGa-7xvNr6o-CN4ILrrPhwZOfm0k50PDTcO5flVdCD7wWqr24fXWG1MroeXb6h3RgXMh9CAuqqddDBlDrkdHOLGEOXk8uYXFmS1xH5kLE8vJTXh06RcxH9gaIAYqMx-KA-ISE_NHt0c2uey2HGIr-bBnu7-766msbkqEL3fKrI4Aa0oYANmtpxz3yR3pffVmdgvh1Uu9rO6_Xf_c3dZ3P26-777e1aA6kWsjtMDB9DBh57TRauzG0elWjz3oEbt-crKfda9VD_MMg9LQzoajHlUvRYfqsvp0zn1M8feKlO3RE-CyuIBxJataIbpBDUUoz0JIkSjhbB9TeTP9sYLbDbo92A263aBbbmyBXkwfX9IdgVvm5AJ4-ueUUrat6EzRfTnrsLx68pgsgd-ITD4hZDtF_78zz3NLmwM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>35116939</pqid></control><display><type>article</type><title>Content-based retrieval of logo and trademarks in unconstrained color image databases using Color Edge Gradient Co-occurrence Histograms</title><source>ScienceDirect Journals</source><creator>Phan, Raymond ; Androutsos, Dimitrios</creator><creatorcontrib>Phan, Raymond ; Androutsos, Dimitrios</creatorcontrib><description>In this paper, we present an algorithm that extends the Color Edge Co-occurrence Histogram (CECH) object detection scheme on compound color objects, for the retrieval of logos and trademarks in unconstrained color image databases. We introduce more accurate information to the CECH, by virtue of incorporating color edge detection using vector order statistics. This produces a more accurate representation of edges in color images, as compared to the simple color pixel difference classification of edges seen with the CECH. Our proposed method is thus reliant on edge gradient information, and so we call it the Color Edge Gradient Co-occurrence Histogram (CEGCH). We also introduce a color quantization method based in the hue–saturation–value (HSV) color space, illustrating that it is a more suitable scheme of quantization for image retrieval, compared to the color quantization scheme introduced with the CECH. Experimental results demonstrate that the CEGCH and the HSV color quantization scheme is insensitive to scaling, rotation, and partial deformations, and outperforms the use of the CECH in image retrieval, with higher precision and recall. We also perform experiments on a closely related algorithm based on the Color Co-occurrence Histogram (CCH) and demonstrate that our algorithm is also superior in comparison, with higher precision and recall.</description><identifier>ISSN: 1077-3142</identifier><identifier>EISSN: 1090-235X</identifier><identifier>DOI: 10.1016/j.cviu.2009.07.004</identifier><identifier>CODEN: CVIUF4</identifier><language>eng</language><publisher>Amsterdam: Elsevier Inc</publisher><subject>Applied sciences ; Artificial intelligence ; Color edge detection ; Color Edge Gradient Co-occurrence Histogram (CEGCH) ; Computer science; control theory; systems ; Exact sciences and technology ; HSV color quantization ; Information systems. Data bases ; Logo and trademark retrieval ; Memory organisation. Data processing ; Pattern recognition ; Pattern recognition. Digital image processing. Computational geometry ; Software</subject><ispartof>Computer vision and image understanding, 2010, Vol.114 (1), p.66-84</ispartof><rights>2009 Elsevier Inc.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c361t-7141e978cde6a4743b6bba454b8c4be68da28f48438cffc934c5f70e4b38216e3</citedby><cites>FETCH-LOGICAL-c361t-7141e978cde6a4743b6bba454b8c4be68da28f48438cffc934c5f70e4b38216e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4024,27923,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=22255167$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Phan, Raymond</creatorcontrib><creatorcontrib>Androutsos, Dimitrios</creatorcontrib><title>Content-based retrieval of logo and trademarks in unconstrained color image databases using Color Edge Gradient Co-occurrence Histograms</title><title>Computer vision and image understanding</title><description>In this paper, we present an algorithm that extends the Color Edge Co-occurrence Histogram (CECH) object detection scheme on compound color objects, for the retrieval of logos and trademarks in unconstrained color image databases. We introduce more accurate information to the CECH, by virtue of incorporating color edge detection using vector order statistics. This produces a more accurate representation of edges in color images, as compared to the simple color pixel difference classification of edges seen with the CECH. Our proposed method is thus reliant on edge gradient information, and so we call it the Color Edge Gradient Co-occurrence Histogram (CEGCH). We also introduce a color quantization method based in the hue–saturation–value (HSV) color space, illustrating that it is a more suitable scheme of quantization for image retrieval, compared to the color quantization scheme introduced with the CECH. Experimental results demonstrate that the CEGCH and the HSV color quantization scheme is insensitive to scaling, rotation, and partial deformations, and outperforms the use of the CECH in image retrieval, with higher precision and recall. We also perform experiments on a closely related algorithm based on the Color Co-occurrence Histogram (CCH) and demonstrate that our algorithm is also superior in comparison, with higher precision and recall.</description><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Color edge detection</subject><subject>Color Edge Gradient Co-occurrence Histogram (CEGCH)</subject><subject>Computer science; control theory; systems</subject><subject>Exact sciences and technology</subject><subject>HSV color quantization</subject><subject>Information systems. Data bases</subject><subject>Logo and trademark retrieval</subject><subject>Memory organisation. Data processing</subject><subject>Pattern recognition</subject><subject>Pattern recognition. Digital image processing. Computational geometry</subject><subject>Software</subject><issn>1077-3142</issn><issn>1090-235X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp9kM9u1DAQxiMEEqX0BTj5ArcE_0ucSFzQqrRIlbhQqTfLmUxWXrJ28Tgr8QZ97DpsxZHTjGa-7xvNr6o-CN4ILrrPhwZOfm0k50PDTcO5flVdCD7wWqr24fXWG1MroeXb6h3RgXMh9CAuqqddDBlDrkdHOLGEOXk8uYXFmS1xH5kLE8vJTXh06RcxH9gaIAYqMx-KA-ISE_NHt0c2uey2HGIr-bBnu7-766msbkqEL3fKrI4Aa0oYANmtpxz3yR3pffVmdgvh1Uu9rO6_Xf_c3dZ3P26-777e1aA6kWsjtMDB9DBh57TRauzG0elWjz3oEbt-crKfda9VD_MMg9LQzoajHlUvRYfqsvp0zn1M8feKlO3RE-CyuIBxJataIbpBDUUoz0JIkSjhbB9TeTP9sYLbDbo92A263aBbbmyBXkwfX9IdgVvm5AJ4-ueUUrat6EzRfTnrsLx68pgsgd-ITD4hZDtF_78zz3NLmwM</recordid><startdate>2010</startdate><enddate>2010</enddate><creator>Phan, Raymond</creator><creator>Androutsos, Dimitrios</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>2010</creationdate><title>Content-based retrieval of logo and trademarks in unconstrained color image databases using Color Edge Gradient Co-occurrence Histograms</title><author>Phan, Raymond ; Androutsos, Dimitrios</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c361t-7141e978cde6a4743b6bba454b8c4be68da28f48438cffc934c5f70e4b38216e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Color edge detection</topic><topic>Color Edge Gradient Co-occurrence Histogram (CEGCH)</topic><topic>Computer science; control theory; systems</topic><topic>Exact sciences and technology</topic><topic>HSV color quantization</topic><topic>Information systems. Data bases</topic><topic>Logo and trademark retrieval</topic><topic>Memory organisation. Data processing</topic><topic>Pattern recognition</topic><topic>Pattern recognition. Digital image processing. Computational geometry</topic><topic>Software</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Phan, Raymond</creatorcontrib><creatorcontrib>Androutsos, Dimitrios</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computer vision and image understanding</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Phan, Raymond</au><au>Androutsos, Dimitrios</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Content-based retrieval of logo and trademarks in unconstrained color image databases using Color Edge Gradient Co-occurrence Histograms</atitle><jtitle>Computer vision and image understanding</jtitle><date>2010</date><risdate>2010</risdate><volume>114</volume><issue>1</issue><spage>66</spage><epage>84</epage><pages>66-84</pages><issn>1077-3142</issn><eissn>1090-235X</eissn><coden>CVIUF4</coden><abstract>In this paper, we present an algorithm that extends the Color Edge Co-occurrence Histogram (CECH) object detection scheme on compound color objects, for the retrieval of logos and trademarks in unconstrained color image databases. We introduce more accurate information to the CECH, by virtue of incorporating color edge detection using vector order statistics. This produces a more accurate representation of edges in color images, as compared to the simple color pixel difference classification of edges seen with the CECH. Our proposed method is thus reliant on edge gradient information, and so we call it the Color Edge Gradient Co-occurrence Histogram (CEGCH). We also introduce a color quantization method based in the hue–saturation–value (HSV) color space, illustrating that it is a more suitable scheme of quantization for image retrieval, compared to the color quantization scheme introduced with the CECH. Experimental results demonstrate that the CEGCH and the HSV color quantization scheme is insensitive to scaling, rotation, and partial deformations, and outperforms the use of the CECH in image retrieval, with higher precision and recall. We also perform experiments on a closely related algorithm based on the Color Co-occurrence Histogram (CCH) and demonstrate that our algorithm is also superior in comparison, with higher precision and recall.</abstract><cop>Amsterdam</cop><pub>Elsevier Inc</pub><doi>10.1016/j.cviu.2009.07.004</doi><tpages>19</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1077-3142
ispartof Computer vision and image understanding, 2010, Vol.114 (1), p.66-84
issn 1077-3142
1090-235X
language eng
recordid cdi_proquest_miscellaneous_35116939
source ScienceDirect Journals
subjects Applied sciences
Artificial intelligence
Color edge detection
Color Edge Gradient Co-occurrence Histogram (CEGCH)
Computer science
control theory
systems
Exact sciences and technology
HSV color quantization
Information systems. Data bases
Logo and trademark retrieval
Memory organisation. Data processing
Pattern recognition
Pattern recognition. Digital image processing. Computational geometry
Software
title Content-based retrieval of logo and trademarks in unconstrained color image databases using Color Edge Gradient Co-occurrence Histograms
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T07%3A39%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Content-based%20retrieval%20of%20logo%20and%20trademarks%20in%20unconstrained%20color%20image%20databases%20using%20Color%20Edge%20Gradient%20Co-occurrence%20Histograms&rft.jtitle=Computer%20vision%20and%20image%20understanding&rft.au=Phan,%20Raymond&rft.date=2010&rft.volume=114&rft.issue=1&rft.spage=66&rft.epage=84&rft.pages=66-84&rft.issn=1077-3142&rft.eissn=1090-235X&rft.coden=CVIUF4&rft_id=info:doi/10.1016/j.cviu.2009.07.004&rft_dat=%3Cproquest_cross%3E35116939%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c361t-7141e978cde6a4743b6bba454b8c4be68da28f48438cffc934c5f70e4b38216e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=35116939&rft_id=info:pmid/&rfr_iscdi=true