Loading…

Fidelity of HIV-1 Reverse Transcriptase

The human immunodeficiency virus type 1 (HIV-1) shows extensive genetic variation and undergoes rapid evolution. The fidelity of purified HIV-1 reverse transcriptase was measured during DNA polymerization in vitro by means of three different assays. Reverse transcriptase from HIV-1 introduced base-s...

Full description

Saved in:
Bibliographic Details
Published in:Science (American Association for the Advancement of Science) 1988-11, Vol.242 (4882), p.1168-1171
Main Authors: Preston, Bradley D., Poiesz, Bernard J., Loeb, Lawrence A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The human immunodeficiency virus type 1 (HIV-1) shows extensive genetic variation and undergoes rapid evolution. The fidelity of purified HIV-1 reverse transcriptase was measured during DNA polymerization in vitro by means of three different assays. Reverse transcriptase from HIV-1 introduced base-substitution errors in DNA from the bacteriophage φ X174 amber3 at estimated frequencies of 1/2000 to 1/4000. Analyses of misincorporation rates opposite a single template adenine residue showed that HIV-1 reverse transcriptase catalyzed nucleotide mismatches with a specificity of A:C >> A:G > A:A. The high error rate of HIV-1 reverse transcriptase in vitro translates to approximately five to ten errors per HIV-1 genome per round of replication in vivo. This high error rate suggests that misincorporation by HIV-1 reverse transcriptase is, at least in part, responsible for the hypermutability of the AIDS virus. The specificity of misincorporation may provide a basis for the systematic construction of antiviral nucleosides.
ISSN:0036-8075
1095-9203
DOI:10.1126/science.2460924