Loading…
Hand gesture recognition using a neural network shape fitting technique
A new method for hand gesture recognition that is based on a hand gesture fitting procedure via a new Self-Growing and Self-Organized Neural Gas (SGONG) network is proposed. Initially, the region of the hand is detected by applying a color segmentation technique based on a skin color filtering proce...
Saved in:
Published in: | Engineering applications of artificial intelligence 2009-12, Vol.22 (8), p.1141-1158 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A new method for hand gesture recognition that is based on a hand gesture fitting procedure via a new Self-Growing and Self-Organized Neural Gas (SGONG) network is proposed. Initially, the region of the hand is detected by applying a color segmentation technique based on a skin color filtering procedure in the
YCbCr color space. Then, the SGONG network is applied on the hand area so as to approach its shape. Based on the output grid of neurons produced by the neural network, palm morphologic characteristics are extracted. These characteristics, in accordance with powerful finger features, allow the identification of the raised fingers. Finally, the hand gesture recognition is accomplished through a likelihood-based classification technique. The proposed system has been extensively tested with success. |
---|---|
ISSN: | 0952-1976 1873-6769 |
DOI: | 10.1016/j.engappai.2009.03.008 |