Loading…

Atom transfer radical copolymerization of glycidyl methacrylate and allyl methacrylate, two functional monomers

Bi-functional statistical copolymers, based on allyl methacrylate (AMA) and glycidyl methacrylate (GMA), were synthesized via atom transfer radical polymerization (ATRP). The polymerization reactions were carried out in a diphenyl ether solution at low temperature, 50 °C, using ethyl 2-bromoisobutyr...

Full description

Saved in:
Bibliographic Details
Published in:European polymer journal 2008-09, Vol.44 (9), p.2920-2926
Main Authors: París, Rodrigo, Mosquera, Beatriz, de la Fuente, José Luis
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Bi-functional statistical copolymers, based on allyl methacrylate (AMA) and glycidyl methacrylate (GMA), were synthesized via atom transfer radical polymerization (ATRP). The polymerization reactions were carried out in a diphenyl ether solution at low temperature, 50 °C, using ethyl 2-bromoisobutyrate (EBrIB) as an initiator, and copper chloride with N,N,N′,N′′,N′′-pentamethyldiethylenetriamine (PMDETA) as the catalyst. Different aspects of the copolymerization, such as the kinetic behaviour, crosslink density and gel fraction were studied. The sol fractions of the synthesized copolymers were characterized by size exclusion chromatography (SEC) and nuclear magnetic resonance (NMR) spectroscopy. The reactivity ratios were calculated from the copolymer composition, determined by 1H NMR, and using the extended Kelen–Tüdös method. Values of 0.82 ± 0.04 and 1.22 ± 0.03 were obtained for AMA and GMA, respectively. The copolymer composition as a function of conversion degree for the different monomer molar fractions in the feed agreed with the theoretical values calculated from the Mayo–Lewis terminal model (MLTM).
ISSN:0014-3057
1873-1945
DOI:10.1016/j.eurpolymj.2008.06.031