Loading…
Linking Nonlinear System Identification with Nonlinear Dynamic Simulation under OpenSees: Some Justifications and Implementations
This study seeks to bridge the gap between nonlinear system identification and nonlinear dynamic finite-element analysis. Motivated by the needs in earthquake simulation, it is first investigated under which conditions and to what degree the prediction of maximum lateral drift and base shear require...
Saved in:
Published in: | Journal of engineering mechanics 2009-11, Vol.135 (11), p.1213-1226 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This study seeks to bridge the gap between nonlinear system identification and nonlinear dynamic finite-element analysis. Motivated by the needs in earthquake simulation, it is first investigated under which conditions and to what degree the prediction of maximum lateral drift and base shear requires accurate nonlinear hysteretic moment-rotation joint models. A series of simulations is carried out using a simple but typical steel frame under two different earthquake ground motion time histories scaled up to various levels. As one of the two major classes of models in nonlinear system identification, nonparametric models are proposed to be implemented into OpenSees. A methodology with details is provided to effectively implement feedforward neural networks with one hidden layer as a new one-dimensional nonlinear smooth material model directly from a MATLAB environment to OpenSees. The same methodology can be applied to benefit the implementation of other parametric and nonparametric models with linear parameterization. Numerical examples are provided. Challenges are discussed and future work is identified. |
---|---|
ISSN: | 0733-9399 1943-7889 |
DOI: | 10.1061/(ASCE)0733-9399(2009)135:11(1213) |