Loading…

Mechanical properties of glass fiber reinforced polypropylene injection molded with a rotation mold

A special mold (Rotation, Compression, and Expansion Mold) was used to impose a controlled shear action during injection molding of short glass fiber reinforced polypropylene discs. This was achieved by superimposing an external rotation to the pressure‐driven advancing flow front during the mold fi...

Full description

Saved in:
Bibliographic Details
Published in:Polymer engineering and science 2006-11, Vol.46 (11), p.1598-1607
Main Authors: Silva, Cristina A., Viana, Júlio C., van Hattum, Ferrie W.J., Cunha, António M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A special mold (Rotation, Compression, and Expansion Mold) was used to impose a controlled shear action during injection molding of short glass fiber reinforced polypropylene discs. This was achieved by superimposing an external rotation to the pressure‐driven advancing flow front during the mold filling stage. Central gated discs were molded with different cavity rotation velocities, inducing distinct levels of fiber orientation through the thickness. The mechanical behavior of the moldings was assessed, in tensile and flexural modes on specimens cut at different locations along the flow path. Complete discs were also tested in four‐point flexural and in impact tests. The respective results are analyzed and discussed in terms of relationships between the developed fiber orientation level and the mechanical properties. The experimental results confirm that mechanical properties of the moldings depend strongly on fiber orientation and can thus be tailored by the imposed rotation during molding. POLYM. ENG. SCI. 46:1598–1607, 2006. © 2006 Society of Plastics Engineers.
ISSN:0032-3888
1548-2634
DOI:10.1002/pen.20484