Loading…

Emergence of Jets from Turbulence in the Shallow-Water Equations on an Equatorial Beta Plane

Coherent jets, such as the Jovian banded winds, are a prominent feature of rotating turbulence. Shallow-water turbulence models capture the essential mechanism of jet formation, which is systematic eddy momentum flux directed up the mean velocity gradient. Understanding how this systematic eddy flux...

Full description

Saved in:
Bibliographic Details
Published in:Journal of the atmospheric sciences 2009-10, Vol.66 (10), p.3197-3207
Main Authors: FARRELL, Brian F, IOANNOU, Petros J
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Coherent jets, such as the Jovian banded winds, are a prominent feature of rotating turbulence. Shallow-water turbulence models capture the essential mechanism of jet formation, which is systematic eddy momentum flux directed up the mean velocity gradient. Understanding how this systematic eddy flux convergence is maintained and how the mean zonal flow and the eddy field mutually adjust to produce the observed jet structure constitutes a fundamental theoretical problem. In this work a shallow-water equatorial beta-plane model implementation of stochastic structural stability theory (SSST) is used to study the mechanism of zonal jet formation. In SSST a stochastic model for the ensemble-mean turbulent eddy fluxes is coupled with an equation for the mean jet dynamics to produce a nonlinear model of the mutual adjustment between the field of turbulent eddies and the zonal jets. In weak turbulence, and for parameters appropriate to Jupiter, both prograde and retrograde equatorial jets are found to be stable solutions of the SSST system, but only the prograde equatorial jet remains stable in strong turbulence. In addition to the equatorial jet, multiple midlatitude zonal jets are also maintained in these stable SSST equilibria. These midlatitude jets have structure and spacing in agreement with observed zonal jets and exhibit the observed robust reversals in sign of both absolute and potential vorticity gradient.
ISSN:0022-4928
1520-0469
DOI:10.1175/2009jas2941.1