Loading…

Connection and comparison between frequency shift time integration and a spectral transformation preconditioner

The numerical study of exterior acoustics problems is usually carried out in the frequency domain. Finite element analyses often require the solution of large‐scale algebraic linear systems. For very large problems, sometimes the time domain is used. Implicit time integration requires linear system...

Full description

Saved in:
Bibliographic Details
Published in:Numerical linear algebra with applications 2009-01, Vol.16 (1), p.1-17
Main Authors: Meerbergen, Karl, Coyette, Jean-Pierre
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3300-3775da112bf225ef058b409c1d019cc88fa10def6e89196ca3e9133e2ac8c9773
cites cdi_FETCH-LOGICAL-c3300-3775da112bf225ef058b409c1d019cc88fa10def6e89196ca3e9133e2ac8c9773
container_end_page 17
container_issue 1
container_start_page 1
container_title Numerical linear algebra with applications
container_volume 16
creator Meerbergen, Karl
Coyette, Jean-Pierre
description The numerical study of exterior acoustics problems is usually carried out in the frequency domain. Finite element analyses often require the solution of large‐scale algebraic linear systems. For very large problems, sometimes the time domain is used. Implicit time integration requires linear system solves, but these are often far easier than those from the frequency domain. This paper shows a connection between a spectral transformation preconditioner and a frequency shift time integration. This preconditioner is close to the shifted Laplace preconditioner. The preconditioned iterative method appears to be faster than time integration. Copyright © 2008 John Wiley & Sons, Ltd.
doi_str_mv 10.1002/nla.590
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_35298562</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>35298562</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3300-3775da112bf225ef058b409c1d019cc88fa10def6e89196ca3e9133e2ac8c9773</originalsourceid><addsrcrecordid>eNp1kE9PwzAMxSsEEmMgvkJPcEAdTkPa5jhNMEDTQPyVuERZ6kCgTUrSaezb06loNy62n_zzk_Wi6JjAiACk57aSI8ZhJxoQ4DwhDLLdzZxDwmjK9qODED4BIGOcDiI3cdaiao2zsbRlrFzdSG9CJxfYrhBtrD1-L9GqdRw-jG7j1tQYG9viu5fbOxmHprPxsoq7YoN2vu63jUflbGk2Av1htKdlFfDorw-j56vLp8l1Mrub3kzGs0RRCpDQPGelJCRd6DRlqIEViwvgipRAuFJFoSWBEnWGBSc8U5IiJ5RiKlWheJ7TYXTS-zbedd-HVtQmKKwqadEtg6As5QXL0g487UHlXQgetWi8qaVfCwJiE6joAhVdoB151pMrU-H6P0zMZ-OeTnrahBZ_trT0XyLLac7E63wq6PTlMXu4fxO39Benyoid</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>35298562</pqid></control><display><type>article</type><title>Connection and comparison between frequency shift time integration and a spectral transformation preconditioner</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Meerbergen, Karl ; Coyette, Jean-Pierre</creator><creatorcontrib>Meerbergen, Karl ; Coyette, Jean-Pierre</creatorcontrib><description>The numerical study of exterior acoustics problems is usually carried out in the frequency domain. Finite element analyses often require the solution of large‐scale algebraic linear systems. For very large problems, sometimes the time domain is used. Implicit time integration requires linear system solves, but these are often far easier than those from the frequency domain. This paper shows a connection between a spectral transformation preconditioner and a frequency shift time integration. This preconditioner is close to the shifted Laplace preconditioner. The preconditioned iterative method appears to be faster than time integration. Copyright © 2008 John Wiley &amp; Sons, Ltd.</description><identifier>ISSN: 1070-5325</identifier><identifier>EISSN: 1099-1506</identifier><identifier>DOI: 10.1002/nla.590</identifier><language>eng</language><publisher>Chichester, UK: John Wiley &amp; Sons, Ltd</publisher><subject>exterior acoustics ; implicit Euler method ; infinite elements ; preconditioning ; spectral transformation</subject><ispartof>Numerical linear algebra with applications, 2009-01, Vol.16 (1), p.1-17</ispartof><rights>Copyright © 2008 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3300-3775da112bf225ef058b409c1d019cc88fa10def6e89196ca3e9133e2ac8c9773</citedby><cites>FETCH-LOGICAL-c3300-3775da112bf225ef058b409c1d019cc88fa10def6e89196ca3e9133e2ac8c9773</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Meerbergen, Karl</creatorcontrib><creatorcontrib>Coyette, Jean-Pierre</creatorcontrib><title>Connection and comparison between frequency shift time integration and a spectral transformation preconditioner</title><title>Numerical linear algebra with applications</title><addtitle>Numer. Linear Algebra Appl</addtitle><description>The numerical study of exterior acoustics problems is usually carried out in the frequency domain. Finite element analyses often require the solution of large‐scale algebraic linear systems. For very large problems, sometimes the time domain is used. Implicit time integration requires linear system solves, but these are often far easier than those from the frequency domain. This paper shows a connection between a spectral transformation preconditioner and a frequency shift time integration. This preconditioner is close to the shifted Laplace preconditioner. The preconditioned iterative method appears to be faster than time integration. Copyright © 2008 John Wiley &amp; Sons, Ltd.</description><subject>exterior acoustics</subject><subject>implicit Euler method</subject><subject>infinite elements</subject><subject>preconditioning</subject><subject>spectral transformation</subject><issn>1070-5325</issn><issn>1099-1506</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp1kE9PwzAMxSsEEmMgvkJPcEAdTkPa5jhNMEDTQPyVuERZ6kCgTUrSaezb06loNy62n_zzk_Wi6JjAiACk57aSI8ZhJxoQ4DwhDLLdzZxDwmjK9qODED4BIGOcDiI3cdaiao2zsbRlrFzdSG9CJxfYrhBtrD1-L9GqdRw-jG7j1tQYG9viu5fbOxmHprPxsoq7YoN2vu63jUflbGk2Av1htKdlFfDorw-j56vLp8l1Mrub3kzGs0RRCpDQPGelJCRd6DRlqIEViwvgipRAuFJFoSWBEnWGBSc8U5IiJ5RiKlWheJ7TYXTS-zbedd-HVtQmKKwqadEtg6As5QXL0g487UHlXQgetWi8qaVfCwJiE6joAhVdoB151pMrU-H6P0zMZ-OeTnrahBZ_trT0XyLLac7E63wq6PTlMXu4fxO39Benyoid</recordid><startdate>200901</startdate><enddate>200901</enddate><creator>Meerbergen, Karl</creator><creator>Coyette, Jean-Pierre</creator><general>John Wiley &amp; Sons, Ltd</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>200901</creationdate><title>Connection and comparison between frequency shift time integration and a spectral transformation preconditioner</title><author>Meerbergen, Karl ; Coyette, Jean-Pierre</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3300-3775da112bf225ef058b409c1d019cc88fa10def6e89196ca3e9133e2ac8c9773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>exterior acoustics</topic><topic>implicit Euler method</topic><topic>infinite elements</topic><topic>preconditioning</topic><topic>spectral transformation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Meerbergen, Karl</creatorcontrib><creatorcontrib>Coyette, Jean-Pierre</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Numerical linear algebra with applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Meerbergen, Karl</au><au>Coyette, Jean-Pierre</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Connection and comparison between frequency shift time integration and a spectral transformation preconditioner</atitle><jtitle>Numerical linear algebra with applications</jtitle><addtitle>Numer. Linear Algebra Appl</addtitle><date>2009-01</date><risdate>2009</risdate><volume>16</volume><issue>1</issue><spage>1</spage><epage>17</epage><pages>1-17</pages><issn>1070-5325</issn><eissn>1099-1506</eissn><abstract>The numerical study of exterior acoustics problems is usually carried out in the frequency domain. Finite element analyses often require the solution of large‐scale algebraic linear systems. For very large problems, sometimes the time domain is used. Implicit time integration requires linear system solves, but these are often far easier than those from the frequency domain. This paper shows a connection between a spectral transformation preconditioner and a frequency shift time integration. This preconditioner is close to the shifted Laplace preconditioner. The preconditioned iterative method appears to be faster than time integration. Copyright © 2008 John Wiley &amp; Sons, Ltd.</abstract><cop>Chichester, UK</cop><pub>John Wiley &amp; Sons, Ltd</pub><doi>10.1002/nla.590</doi><tpages>17</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1070-5325
ispartof Numerical linear algebra with applications, 2009-01, Vol.16 (1), p.1-17
issn 1070-5325
1099-1506
language eng
recordid cdi_proquest_miscellaneous_35298562
source Wiley-Blackwell Read & Publish Collection
subjects exterior acoustics
implicit Euler method
infinite elements
preconditioning
spectral transformation
title Connection and comparison between frequency shift time integration and a spectral transformation preconditioner
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T10%3A46%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Connection%20and%20comparison%20between%20frequency%20shift%20time%20integration%20and%20a%20spectral%20transformation%20preconditioner&rft.jtitle=Numerical%20linear%20algebra%20with%20applications&rft.au=Meerbergen,%20Karl&rft.date=2009-01&rft.volume=16&rft.issue=1&rft.spage=1&rft.epage=17&rft.pages=1-17&rft.issn=1070-5325&rft.eissn=1099-1506&rft_id=info:doi/10.1002/nla.590&rft_dat=%3Cproquest_cross%3E35298562%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3300-3775da112bf225ef058b409c1d019cc88fa10def6e89196ca3e9133e2ac8c9773%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=35298562&rft_id=info:pmid/&rfr_iscdi=true