Loading…
Connection and comparison between frequency shift time integration and a spectral transformation preconditioner
The numerical study of exterior acoustics problems is usually carried out in the frequency domain. Finite element analyses often require the solution of large‐scale algebraic linear systems. For very large problems, sometimes the time domain is used. Implicit time integration requires linear system...
Saved in:
Published in: | Numerical linear algebra with applications 2009-01, Vol.16 (1), p.1-17 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c3300-3775da112bf225ef058b409c1d019cc88fa10def6e89196ca3e9133e2ac8c9773 |
---|---|
cites | cdi_FETCH-LOGICAL-c3300-3775da112bf225ef058b409c1d019cc88fa10def6e89196ca3e9133e2ac8c9773 |
container_end_page | 17 |
container_issue | 1 |
container_start_page | 1 |
container_title | Numerical linear algebra with applications |
container_volume | 16 |
creator | Meerbergen, Karl Coyette, Jean-Pierre |
description | The numerical study of exterior acoustics problems is usually carried out in the frequency domain. Finite element analyses often require the solution of large‐scale algebraic linear systems. For very large problems, sometimes the time domain is used. Implicit time integration requires linear system solves, but these are often far easier than those from the frequency domain. This paper shows a connection between a spectral transformation preconditioner and a frequency shift time integration. This preconditioner is close to the shifted Laplace preconditioner. The preconditioned iterative method appears to be faster than time integration. Copyright © 2008 John Wiley & Sons, Ltd. |
doi_str_mv | 10.1002/nla.590 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_35298562</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>35298562</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3300-3775da112bf225ef058b409c1d019cc88fa10def6e89196ca3e9133e2ac8c9773</originalsourceid><addsrcrecordid>eNp1kE9PwzAMxSsEEmMgvkJPcEAdTkPa5jhNMEDTQPyVuERZ6kCgTUrSaezb06loNy62n_zzk_Wi6JjAiACk57aSI8ZhJxoQ4DwhDLLdzZxDwmjK9qODED4BIGOcDiI3cdaiao2zsbRlrFzdSG9CJxfYrhBtrD1-L9GqdRw-jG7j1tQYG9viu5fbOxmHprPxsoq7YoN2vu63jUflbGk2Av1htKdlFfDorw-j56vLp8l1Mrub3kzGs0RRCpDQPGelJCRd6DRlqIEViwvgipRAuFJFoSWBEnWGBSc8U5IiJ5RiKlWheJ7TYXTS-zbedd-HVtQmKKwqadEtg6As5QXL0g487UHlXQgetWi8qaVfCwJiE6joAhVdoB151pMrU-H6P0zMZ-OeTnrahBZ_trT0XyLLac7E63wq6PTlMXu4fxO39Benyoid</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>35298562</pqid></control><display><type>article</type><title>Connection and comparison between frequency shift time integration and a spectral transformation preconditioner</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Meerbergen, Karl ; Coyette, Jean-Pierre</creator><creatorcontrib>Meerbergen, Karl ; Coyette, Jean-Pierre</creatorcontrib><description>The numerical study of exterior acoustics problems is usually carried out in the frequency domain. Finite element analyses often require the solution of large‐scale algebraic linear systems. For very large problems, sometimes the time domain is used. Implicit time integration requires linear system solves, but these are often far easier than those from the frequency domain. This paper shows a connection between a spectral transformation preconditioner and a frequency shift time integration. This preconditioner is close to the shifted Laplace preconditioner. The preconditioned iterative method appears to be faster than time integration. Copyright © 2008 John Wiley & Sons, Ltd.</description><identifier>ISSN: 1070-5325</identifier><identifier>EISSN: 1099-1506</identifier><identifier>DOI: 10.1002/nla.590</identifier><language>eng</language><publisher>Chichester, UK: John Wiley & Sons, Ltd</publisher><subject>exterior acoustics ; implicit Euler method ; infinite elements ; preconditioning ; spectral transformation</subject><ispartof>Numerical linear algebra with applications, 2009-01, Vol.16 (1), p.1-17</ispartof><rights>Copyright © 2008 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3300-3775da112bf225ef058b409c1d019cc88fa10def6e89196ca3e9133e2ac8c9773</citedby><cites>FETCH-LOGICAL-c3300-3775da112bf225ef058b409c1d019cc88fa10def6e89196ca3e9133e2ac8c9773</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Meerbergen, Karl</creatorcontrib><creatorcontrib>Coyette, Jean-Pierre</creatorcontrib><title>Connection and comparison between frequency shift time integration and a spectral transformation preconditioner</title><title>Numerical linear algebra with applications</title><addtitle>Numer. Linear Algebra Appl</addtitle><description>The numerical study of exterior acoustics problems is usually carried out in the frequency domain. Finite element analyses often require the solution of large‐scale algebraic linear systems. For very large problems, sometimes the time domain is used. Implicit time integration requires linear system solves, but these are often far easier than those from the frequency domain. This paper shows a connection between a spectral transformation preconditioner and a frequency shift time integration. This preconditioner is close to the shifted Laplace preconditioner. The preconditioned iterative method appears to be faster than time integration. Copyright © 2008 John Wiley & Sons, Ltd.</description><subject>exterior acoustics</subject><subject>implicit Euler method</subject><subject>infinite elements</subject><subject>preconditioning</subject><subject>spectral transformation</subject><issn>1070-5325</issn><issn>1099-1506</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp1kE9PwzAMxSsEEmMgvkJPcEAdTkPa5jhNMEDTQPyVuERZ6kCgTUrSaezb06loNy62n_zzk_Wi6JjAiACk57aSI8ZhJxoQ4DwhDLLdzZxDwmjK9qODED4BIGOcDiI3cdaiao2zsbRlrFzdSG9CJxfYrhBtrD1-L9GqdRw-jG7j1tQYG9viu5fbOxmHprPxsoq7YoN2vu63jUflbGk2Av1htKdlFfDorw-j56vLp8l1Mrub3kzGs0RRCpDQPGelJCRd6DRlqIEViwvgipRAuFJFoSWBEnWGBSc8U5IiJ5RiKlWheJ7TYXTS-zbedd-HVtQmKKwqadEtg6As5QXL0g487UHlXQgetWi8qaVfCwJiE6joAhVdoB151pMrU-H6P0zMZ-OeTnrahBZ_trT0XyLLac7E63wq6PTlMXu4fxO39Benyoid</recordid><startdate>200901</startdate><enddate>200901</enddate><creator>Meerbergen, Karl</creator><creator>Coyette, Jean-Pierre</creator><general>John Wiley & Sons, Ltd</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>200901</creationdate><title>Connection and comparison between frequency shift time integration and a spectral transformation preconditioner</title><author>Meerbergen, Karl ; Coyette, Jean-Pierre</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3300-3775da112bf225ef058b409c1d019cc88fa10def6e89196ca3e9133e2ac8c9773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>exterior acoustics</topic><topic>implicit Euler method</topic><topic>infinite elements</topic><topic>preconditioning</topic><topic>spectral transformation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Meerbergen, Karl</creatorcontrib><creatorcontrib>Coyette, Jean-Pierre</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Numerical linear algebra with applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Meerbergen, Karl</au><au>Coyette, Jean-Pierre</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Connection and comparison between frequency shift time integration and a spectral transformation preconditioner</atitle><jtitle>Numerical linear algebra with applications</jtitle><addtitle>Numer. Linear Algebra Appl</addtitle><date>2009-01</date><risdate>2009</risdate><volume>16</volume><issue>1</issue><spage>1</spage><epage>17</epage><pages>1-17</pages><issn>1070-5325</issn><eissn>1099-1506</eissn><abstract>The numerical study of exterior acoustics problems is usually carried out in the frequency domain. Finite element analyses often require the solution of large‐scale algebraic linear systems. For very large problems, sometimes the time domain is used. Implicit time integration requires linear system solves, but these are often far easier than those from the frequency domain. This paper shows a connection between a spectral transformation preconditioner and a frequency shift time integration. This preconditioner is close to the shifted Laplace preconditioner. The preconditioned iterative method appears to be faster than time integration. Copyright © 2008 John Wiley & Sons, Ltd.</abstract><cop>Chichester, UK</cop><pub>John Wiley & Sons, Ltd</pub><doi>10.1002/nla.590</doi><tpages>17</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1070-5325 |
ispartof | Numerical linear algebra with applications, 2009-01, Vol.16 (1), p.1-17 |
issn | 1070-5325 1099-1506 |
language | eng |
recordid | cdi_proquest_miscellaneous_35298562 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | exterior acoustics implicit Euler method infinite elements preconditioning spectral transformation |
title | Connection and comparison between frequency shift time integration and a spectral transformation preconditioner |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T10%3A46%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Connection%20and%20comparison%20between%20frequency%20shift%20time%20integration%20and%20a%20spectral%20transformation%20preconditioner&rft.jtitle=Numerical%20linear%20algebra%20with%20applications&rft.au=Meerbergen,%20Karl&rft.date=2009-01&rft.volume=16&rft.issue=1&rft.spage=1&rft.epage=17&rft.pages=1-17&rft.issn=1070-5325&rft.eissn=1099-1506&rft_id=info:doi/10.1002/nla.590&rft_dat=%3Cproquest_cross%3E35298562%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3300-3775da112bf225ef058b409c1d019cc88fa10def6e89196ca3e9133e2ac8c9773%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=35298562&rft_id=info:pmid/&rfr_iscdi=true |