Loading…

Cracking energy estimation of ultra low- k package using novel prediction approach combined with global–local modeling technique

Interfacial crack/delamination, due to the presence of dissimilar material systems, is one of the major concerns of thermo-mechanical reliability for the development of next node technology in integrated circuits (IC) devices. The cracking energy results from many back end of line (BEOL) and packagi...

Full description

Saved in:
Bibliographic Details
Published in:Microelectronic engineering 2008-10, Vol.85 (10), p.2079-2084
Main Authors: Lee, Chang-Chun, Chou, Tsung-Lin, Chiu, Chien-Chia, Hsia, Chin-Chiu, Chiang, Kuo-Ning
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Interfacial crack/delamination, due to the presence of dissimilar material systems, is one of the major concerns of thermo-mechanical reliability for the development of next node technology in integrated circuits (IC) devices. The cracking energy results from many back end of line (BEOL) and packaging processes at various temperature differences is prone to drive the crack advance. To investigate the sensitivity of crack propagation in low- k dielectric materials, a robust estimation of J-integral approach combined with a rectangular path of integral contour is performed using finite element analysis (FEA). By means of the verification of 4-point bending test (4-PBT), excellent agreements are obtained as compared with the experimental data. Moreover, a multiscale modeling technique is proposed to resolve the difficulty of model construction as from bridge device level to packaging level. The sub-modeling procedures developed specifically for the impact prediction of interfacial crack in complicated Cu/low- k interconnects. The analytic results indicate the foregoing methodology is valuable to forecast the physical behavior and reliability of advanced IC devices in the nano scaled size. On the basis of the presented results in this research, an approximated criterion for determining the dimensions of sub-model is suggested and demonstrated as well.
ISSN:0167-9317
1873-5568
DOI:10.1016/j.mee.2008.04.006