Loading…
Adsorptive immobilization of enzymatic active substances on alumina–silica foam coated by carbon nanofibers
The adsorption abilities of an alumina–silica foam coated by a layer of catalytic filamentous carbon (CFC/ceramics) were studied with respect to enzymatic active substances (EAS) - enzymes glucoamylase and invertase, intracellular compartments of baker’s yeast and whole non-growing cells of various...
Saved in:
Published in: | Carbon (New York) 2009-02, Vol.47 (2), p.420-427 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The adsorption abilities of an alumina–silica foam coated by a layer of catalytic filamentous carbon (CFC/ceramics) were studied with respect to enzymatic active substances (EAS) - enzymes glucoamylase and invertase, intracellular compartments of baker’s yeast and whole non-growing cells of various microorganisms (
Saccharomyces cerevisiae,
Rhodococcus sp.,
Arthrobacter sp.). The activity and stability of heterogeneous biocatalysts prepared by EAS adsorption on the CFC/ceramics were studied in hydrolysis, oxidation and isomerization reactions. Glucoamylase was found to retain up to 20% of the activity of a soluble enzyme after adsorption on the CFC/ceramics. Invertase and invertase-active yeast autolysate retained practically all their activity. The enzymatic activities of non-growing cells of baker’s yeast and
Rhodococcus increased after adsorption on CFC/ceramics by a factor of 1.5–1.8 and 3.7, respectively. A “glucoamylase on CFC/ceramics” biocatalyst for the hydrolysis of dextrin was shown to have high long-term stability, retaining its activity after storage for 10–12 months at ambient temperature. A “yeast autolysate on CFC/ceramics” biocatalyst for sucrose inversion retained >50% of the activity after 2–3 month storage at ambient temperature. A “non-growing bacteria
Arthrobacter sp. on CFC/ceramics” biocatalyst for glucose isomerization retained half its activity after 12
h use at 70
°C. |
---|---|
ISSN: | 0008-6223 1873-3891 |
DOI: | 10.1016/j.carbon.2008.10.019 |