Loading…

Fabrication of a Practical and Polymer-Rich Organic Radical Polymer Electrode and its Rate Dependence

A practical and polymer‐rich organic radical cathode that contains 80 wt.‐% poly(4‐vinyloxy‐2,2,6,6‐tetramethylpiperidine‐N‐oxyl) (PTVE) and 15 wt.‐% vapor‐grown carbon fiber (VGCF) has been fabricated. The PTVE/VGCF composite electrode shows a reversible redox peak at 3.56 V (vs Li/Li+) in cyclic v...

Full description

Saved in:
Bibliographic Details
Published in:Macromolecular rapid communications. 2008-10, Vol.29 (20), p.1635-1639
Main Authors: Suguro, Masahiro, Iwasa, Shigeyuki, Nakahara, Kentaro
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4546-e0ff79681fa331301c23b9dd737f8dc41631c5896303d2e6daaf969dfc2771bd3
cites cdi_FETCH-LOGICAL-c4546-e0ff79681fa331301c23b9dd737f8dc41631c5896303d2e6daaf969dfc2771bd3
container_end_page 1639
container_issue 20
container_start_page 1635
container_title Macromolecular rapid communications.
container_volume 29
creator Suguro, Masahiro
Iwasa, Shigeyuki
Nakahara, Kentaro
description A practical and polymer‐rich organic radical cathode that contains 80 wt.‐% poly(4‐vinyloxy‐2,2,6,6‐tetramethylpiperidine‐N‐oxyl) (PTVE) and 15 wt.‐% vapor‐grown carbon fiber (VGCF) has been fabricated. The PTVE/VGCF composite electrode shows a reversible redox peak at 3.56 V (vs Li/Li+) in cyclic voltammetry. A coin‐type cell with the PTVE/VGCF composite electrode as the cathode and lithium metal as the anode has also been fabricated and used for charge/discharge measurements. When the cell was discharged at 0.3 mA · cm−2 (1 C), a capacity of 104 mAh · g−1, which is 77% of PTVE's theoretical capacity (135 mAh · g−1), was obtained. When it was discharged at 9.0 mA · cm−2 (30 C), its capacity was 52% of the capacity it had when it was discharged at 0.3 mA · cm−2 (1 C). Even when discharged at 24 mA · cm−2 (80 C), it surprisingly had 32% of the capacity it had when discharged at 0.3 mA · cm−2. The observed rate dependence shows that the polymer‐rich electrode could discharge over 50% of the cell capacity in two minutes and over 30% within one minute.
doi_str_mv 10.1002/marc.200800406
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_35346053</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>35346053</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4546-e0ff79681fa331301c23b9dd737f8dc41631c5896303d2e6daaf969dfc2771bd3</originalsourceid><addsrcrecordid>eNqFkEtPAyEURidGE59b12x0N_UCM0xZan3UpD5SNSZuCIWLotOZCmO0_160TePOFTfc832Ek2X7FHoUgB1NdTA9BtAHKECsZVu0ZDTnklXraQbGcsq52My2Y3yFhBXAtjI815Pgje5825DWEU1ugzZduqmJbiy5bev5FEM-9uaF3IRn3XhDxtr-AsslOavRdKG1-BvxXUxEh-QUZ9hYbAzuZhtO1xH3ludO9nB-dj8Y5qObi8vB8Sg3RVmIHMG5Soo-dZpzyoEaxifS2opXrm9NQQWnpuxLwYFbhsJq7aSQ1hlWVXRi-U52uOidhfb9A2Onpj4arGvdYPsRFS95IaDkCewtQBPaGAM6NQs-CZwrCurHpvqxqVY2U-Bg2axj-roLujE-rlIMKskKViVOLrhPX-P8n1Z1dTwe_H0jX2R97PBrldXhTYmkoFSP1xfq5KmQQ3F6pwb8G-oTlMQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>35346053</pqid></control><display><type>article</type><title>Fabrication of a Practical and Polymer-Rich Organic Radical Polymer Electrode and its Rate Dependence</title><source>Wiley</source><creator>Suguro, Masahiro ; Iwasa, Shigeyuki ; Nakahara, Kentaro</creator><creatorcontrib>Suguro, Masahiro ; Iwasa, Shigeyuki ; Nakahara, Kentaro</creatorcontrib><description>A practical and polymer‐rich organic radical cathode that contains 80 wt.‐% poly(4‐vinyloxy‐2,2,6,6‐tetramethylpiperidine‐N‐oxyl) (PTVE) and 15 wt.‐% vapor‐grown carbon fiber (VGCF) has been fabricated. The PTVE/VGCF composite electrode shows a reversible redox peak at 3.56 V (vs Li/Li+) in cyclic voltammetry. A coin‐type cell with the PTVE/VGCF composite electrode as the cathode and lithium metal as the anode has also been fabricated and used for charge/discharge measurements. When the cell was discharged at 0.3 mA · cm−2 (1 C), a capacity of 104 mAh · g−1, which is 77% of PTVE's theoretical capacity (135 mAh · g−1), was obtained. When it was discharged at 9.0 mA · cm−2 (30 C), its capacity was 52% of the capacity it had when it was discharged at 0.3 mA · cm−2 (1 C). Even when discharged at 24 mA · cm−2 (80 C), it surprisingly had 32% of the capacity it had when discharged at 0.3 mA · cm−2. The observed rate dependence shows that the polymer‐rich electrode could discharge over 50% of the cell capacity in two minutes and over 30% within one minute.</description><identifier>ISSN: 1022-1336</identifier><identifier>EISSN: 1521-3927</identifier><identifier>DOI: 10.1002/marc.200800406</identifier><language>eng</language><publisher>Weinheim: WILEY-VCH Verlag</publisher><subject>Applied sciences ; charge transfer ; Direct energy conversion and energy accumulation ; Electrical engineering. Electrical power engineering ; Electrical power engineering ; Electrochemical conversion: primary and secondary batteries, fuel cells ; electrochemistry ; electrode ; Exact sciences and technology ; lithium ion ; Organic polymers ; organic radical polymer ; Physicochemistry of polymers ; Polymers with particular properties ; Preparation, kinetics, thermodynamics, mechanism and catalysts ; rechargeable battery ; TEMPO</subject><ispartof>Macromolecular rapid communications., 2008-10, Vol.29 (20), p.1635-1639</ispartof><rights>Copyright © 2008 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2008 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4546-e0ff79681fa331301c23b9dd737f8dc41631c5896303d2e6daaf969dfc2771bd3</citedby><cites>FETCH-LOGICAL-c4546-e0ff79681fa331301c23b9dd737f8dc41631c5896303d2e6daaf969dfc2771bd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=20792427$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Suguro, Masahiro</creatorcontrib><creatorcontrib>Iwasa, Shigeyuki</creatorcontrib><creatorcontrib>Nakahara, Kentaro</creatorcontrib><title>Fabrication of a Practical and Polymer-Rich Organic Radical Polymer Electrode and its Rate Dependence</title><title>Macromolecular rapid communications.</title><addtitle>Macromol. Rapid Commun</addtitle><description>A practical and polymer‐rich organic radical cathode that contains 80 wt.‐% poly(4‐vinyloxy‐2,2,6,6‐tetramethylpiperidine‐N‐oxyl) (PTVE) and 15 wt.‐% vapor‐grown carbon fiber (VGCF) has been fabricated. The PTVE/VGCF composite electrode shows a reversible redox peak at 3.56 V (vs Li/Li+) in cyclic voltammetry. A coin‐type cell with the PTVE/VGCF composite electrode as the cathode and lithium metal as the anode has also been fabricated and used for charge/discharge measurements. When the cell was discharged at 0.3 mA · cm−2 (1 C), a capacity of 104 mAh · g−1, which is 77% of PTVE's theoretical capacity (135 mAh · g−1), was obtained. When it was discharged at 9.0 mA · cm−2 (30 C), its capacity was 52% of the capacity it had when it was discharged at 0.3 mA · cm−2 (1 C). Even when discharged at 24 mA · cm−2 (80 C), it surprisingly had 32% of the capacity it had when discharged at 0.3 mA · cm−2. The observed rate dependence shows that the polymer‐rich electrode could discharge over 50% of the cell capacity in two minutes and over 30% within one minute.</description><subject>Applied sciences</subject><subject>charge transfer</subject><subject>Direct energy conversion and energy accumulation</subject><subject>Electrical engineering. Electrical power engineering</subject><subject>Electrical power engineering</subject><subject>Electrochemical conversion: primary and secondary batteries, fuel cells</subject><subject>electrochemistry</subject><subject>electrode</subject><subject>Exact sciences and technology</subject><subject>lithium ion</subject><subject>Organic polymers</subject><subject>organic radical polymer</subject><subject>Physicochemistry of polymers</subject><subject>Polymers with particular properties</subject><subject>Preparation, kinetics, thermodynamics, mechanism and catalysts</subject><subject>rechargeable battery</subject><subject>TEMPO</subject><issn>1022-1336</issn><issn>1521-3927</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNqFkEtPAyEURidGE59b12x0N_UCM0xZan3UpD5SNSZuCIWLotOZCmO0_160TePOFTfc832Ek2X7FHoUgB1NdTA9BtAHKECsZVu0ZDTnklXraQbGcsq52My2Y3yFhBXAtjI815Pgje5825DWEU1ugzZduqmJbiy5bev5FEM-9uaF3IRn3XhDxtr-AsslOavRdKG1-BvxXUxEh-QUZ9hYbAzuZhtO1xH3ludO9nB-dj8Y5qObi8vB8Sg3RVmIHMG5Soo-dZpzyoEaxifS2opXrm9NQQWnpuxLwYFbhsJq7aSQ1hlWVXRi-U52uOidhfb9A2Onpj4arGvdYPsRFS95IaDkCewtQBPaGAM6NQs-CZwrCurHpvqxqVY2U-Bg2axj-roLujE-rlIMKskKViVOLrhPX-P8n1Z1dTwe_H0jX2R97PBrldXhTYmkoFSP1xfq5KmQQ3F6pwb8G-oTlMQ</recordid><startdate>20081022</startdate><enddate>20081022</enddate><creator>Suguro, Masahiro</creator><creator>Iwasa, Shigeyuki</creator><creator>Nakahara, Kentaro</creator><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><general>Wiley</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20081022</creationdate><title>Fabrication of a Practical and Polymer-Rich Organic Radical Polymer Electrode and its Rate Dependence</title><author>Suguro, Masahiro ; Iwasa, Shigeyuki ; Nakahara, Kentaro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4546-e0ff79681fa331301c23b9dd737f8dc41631c5896303d2e6daaf969dfc2771bd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Applied sciences</topic><topic>charge transfer</topic><topic>Direct energy conversion and energy accumulation</topic><topic>Electrical engineering. Electrical power engineering</topic><topic>Electrical power engineering</topic><topic>Electrochemical conversion: primary and secondary batteries, fuel cells</topic><topic>electrochemistry</topic><topic>electrode</topic><topic>Exact sciences and technology</topic><topic>lithium ion</topic><topic>Organic polymers</topic><topic>organic radical polymer</topic><topic>Physicochemistry of polymers</topic><topic>Polymers with particular properties</topic><topic>Preparation, kinetics, thermodynamics, mechanism and catalysts</topic><topic>rechargeable battery</topic><topic>TEMPO</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Suguro, Masahiro</creatorcontrib><creatorcontrib>Iwasa, Shigeyuki</creatorcontrib><creatorcontrib>Nakahara, Kentaro</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Macromolecular rapid communications.</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Suguro, Masahiro</au><au>Iwasa, Shigeyuki</au><au>Nakahara, Kentaro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fabrication of a Practical and Polymer-Rich Organic Radical Polymer Electrode and its Rate Dependence</atitle><jtitle>Macromolecular rapid communications.</jtitle><addtitle>Macromol. Rapid Commun</addtitle><date>2008-10-22</date><risdate>2008</risdate><volume>29</volume><issue>20</issue><spage>1635</spage><epage>1639</epage><pages>1635-1639</pages><issn>1022-1336</issn><eissn>1521-3927</eissn><abstract>A practical and polymer‐rich organic radical cathode that contains 80 wt.‐% poly(4‐vinyloxy‐2,2,6,6‐tetramethylpiperidine‐N‐oxyl) (PTVE) and 15 wt.‐% vapor‐grown carbon fiber (VGCF) has been fabricated. The PTVE/VGCF composite electrode shows a reversible redox peak at 3.56 V (vs Li/Li+) in cyclic voltammetry. A coin‐type cell with the PTVE/VGCF composite electrode as the cathode and lithium metal as the anode has also been fabricated and used for charge/discharge measurements. When the cell was discharged at 0.3 mA · cm−2 (1 C), a capacity of 104 mAh · g−1, which is 77% of PTVE's theoretical capacity (135 mAh · g−1), was obtained. When it was discharged at 9.0 mA · cm−2 (30 C), its capacity was 52% of the capacity it had when it was discharged at 0.3 mA · cm−2 (1 C). Even when discharged at 24 mA · cm−2 (80 C), it surprisingly had 32% of the capacity it had when discharged at 0.3 mA · cm−2. The observed rate dependence shows that the polymer‐rich electrode could discharge over 50% of the cell capacity in two minutes and over 30% within one minute.</abstract><cop>Weinheim</cop><pub>WILEY-VCH Verlag</pub><doi>10.1002/marc.200800406</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1022-1336
ispartof Macromolecular rapid communications., 2008-10, Vol.29 (20), p.1635-1639
issn 1022-1336
1521-3927
language eng
recordid cdi_proquest_miscellaneous_35346053
source Wiley
subjects Applied sciences
charge transfer
Direct energy conversion and energy accumulation
Electrical engineering. Electrical power engineering
Electrical power engineering
Electrochemical conversion: primary and secondary batteries, fuel cells
electrochemistry
electrode
Exact sciences and technology
lithium ion
Organic polymers
organic radical polymer
Physicochemistry of polymers
Polymers with particular properties
Preparation, kinetics, thermodynamics, mechanism and catalysts
rechargeable battery
TEMPO
title Fabrication of a Practical and Polymer-Rich Organic Radical Polymer Electrode and its Rate Dependence
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T16%3A32%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fabrication%20of%20a%20Practical%20and%20Polymer-Rich%20Organic%20Radical%20Polymer%20Electrode%20and%20its%20Rate%20Dependence&rft.jtitle=Macromolecular%20rapid%20communications.&rft.au=Suguro,%20Masahiro&rft.date=2008-10-22&rft.volume=29&rft.issue=20&rft.spage=1635&rft.epage=1639&rft.pages=1635-1639&rft.issn=1022-1336&rft.eissn=1521-3927&rft_id=info:doi/10.1002/marc.200800406&rft_dat=%3Cproquest_cross%3E35346053%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4546-e0ff79681fa331301c23b9dd737f8dc41631c5896303d2e6daaf969dfc2771bd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=35346053&rft_id=info:pmid/&rfr_iscdi=true