Loading…
Fabrication of a Practical and Polymer-Rich Organic Radical Polymer Electrode and its Rate Dependence
A practical and polymer‐rich organic radical cathode that contains 80 wt.‐% poly(4‐vinyloxy‐2,2,6,6‐tetramethylpiperidine‐N‐oxyl) (PTVE) and 15 wt.‐% vapor‐grown carbon fiber (VGCF) has been fabricated. The PTVE/VGCF composite electrode shows a reversible redox peak at 3.56 V (vs Li/Li+) in cyclic v...
Saved in:
Published in: | Macromolecular rapid communications. 2008-10, Vol.29 (20), p.1635-1639 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c4546-e0ff79681fa331301c23b9dd737f8dc41631c5896303d2e6daaf969dfc2771bd3 |
---|---|
cites | cdi_FETCH-LOGICAL-c4546-e0ff79681fa331301c23b9dd737f8dc41631c5896303d2e6daaf969dfc2771bd3 |
container_end_page | 1639 |
container_issue | 20 |
container_start_page | 1635 |
container_title | Macromolecular rapid communications. |
container_volume | 29 |
creator | Suguro, Masahiro Iwasa, Shigeyuki Nakahara, Kentaro |
description | A practical and polymer‐rich organic radical cathode that contains 80 wt.‐% poly(4‐vinyloxy‐2,2,6,6‐tetramethylpiperidine‐N‐oxyl) (PTVE) and 15 wt.‐% vapor‐grown carbon fiber (VGCF) has been fabricated. The PTVE/VGCF composite electrode shows a reversible redox peak at 3.56 V (vs Li/Li+) in cyclic voltammetry. A coin‐type cell with the PTVE/VGCF composite electrode as the cathode and lithium metal as the anode has also been fabricated and used for charge/discharge measurements. When the cell was discharged at 0.3 mA · cm−2 (1 C), a capacity of 104 mAh · g−1, which is 77% of PTVE's theoretical capacity (135 mAh · g−1), was obtained. When it was discharged at 9.0 mA · cm−2 (30 C), its capacity was 52% of the capacity it had when it was discharged at 0.3 mA · cm−2 (1 C). Even when discharged at 24 mA · cm−2 (80 C), it surprisingly had 32% of the capacity it had when discharged at 0.3 mA · cm−2. The observed rate dependence shows that the polymer‐rich electrode could discharge over 50% of the cell capacity in two minutes and over 30% within one minute. |
doi_str_mv | 10.1002/marc.200800406 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_35346053</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>35346053</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4546-e0ff79681fa331301c23b9dd737f8dc41631c5896303d2e6daaf969dfc2771bd3</originalsourceid><addsrcrecordid>eNqFkEtPAyEURidGE59b12x0N_UCM0xZan3UpD5SNSZuCIWLotOZCmO0_160TePOFTfc832Ek2X7FHoUgB1NdTA9BtAHKECsZVu0ZDTnklXraQbGcsq52My2Y3yFhBXAtjI815Pgje5825DWEU1ugzZduqmJbiy5bev5FEM-9uaF3IRn3XhDxtr-AsslOavRdKG1-BvxXUxEh-QUZ9hYbAzuZhtO1xH3ludO9nB-dj8Y5qObi8vB8Sg3RVmIHMG5Soo-dZpzyoEaxifS2opXrm9NQQWnpuxLwYFbhsJq7aSQ1hlWVXRi-U52uOidhfb9A2Onpj4arGvdYPsRFS95IaDkCewtQBPaGAM6NQs-CZwrCurHpvqxqVY2U-Bg2axj-roLujE-rlIMKskKViVOLrhPX-P8n1Z1dTwe_H0jX2R97PBrldXhTYmkoFSP1xfq5KmQQ3F6pwb8G-oTlMQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>35346053</pqid></control><display><type>article</type><title>Fabrication of a Practical and Polymer-Rich Organic Radical Polymer Electrode and its Rate Dependence</title><source>Wiley</source><creator>Suguro, Masahiro ; Iwasa, Shigeyuki ; Nakahara, Kentaro</creator><creatorcontrib>Suguro, Masahiro ; Iwasa, Shigeyuki ; Nakahara, Kentaro</creatorcontrib><description>A practical and polymer‐rich organic radical cathode that contains 80 wt.‐% poly(4‐vinyloxy‐2,2,6,6‐tetramethylpiperidine‐N‐oxyl) (PTVE) and 15 wt.‐% vapor‐grown carbon fiber (VGCF) has been fabricated. The PTVE/VGCF composite electrode shows a reversible redox peak at 3.56 V (vs Li/Li+) in cyclic voltammetry. A coin‐type cell with the PTVE/VGCF composite electrode as the cathode and lithium metal as the anode has also been fabricated and used for charge/discharge measurements. When the cell was discharged at 0.3 mA · cm−2 (1 C), a capacity of 104 mAh · g−1, which is 77% of PTVE's theoretical capacity (135 mAh · g−1), was obtained. When it was discharged at 9.0 mA · cm−2 (30 C), its capacity was 52% of the capacity it had when it was discharged at 0.3 mA · cm−2 (1 C). Even when discharged at 24 mA · cm−2 (80 C), it surprisingly had 32% of the capacity it had when discharged at 0.3 mA · cm−2. The observed rate dependence shows that the polymer‐rich electrode could discharge over 50% of the cell capacity in two minutes and over 30% within one minute.</description><identifier>ISSN: 1022-1336</identifier><identifier>EISSN: 1521-3927</identifier><identifier>DOI: 10.1002/marc.200800406</identifier><language>eng</language><publisher>Weinheim: WILEY-VCH Verlag</publisher><subject>Applied sciences ; charge transfer ; Direct energy conversion and energy accumulation ; Electrical engineering. Electrical power engineering ; Electrical power engineering ; Electrochemical conversion: primary and secondary batteries, fuel cells ; electrochemistry ; electrode ; Exact sciences and technology ; lithium ion ; Organic polymers ; organic radical polymer ; Physicochemistry of polymers ; Polymers with particular properties ; Preparation, kinetics, thermodynamics, mechanism and catalysts ; rechargeable battery ; TEMPO</subject><ispartof>Macromolecular rapid communications., 2008-10, Vol.29 (20), p.1635-1639</ispartof><rights>Copyright © 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>2008 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4546-e0ff79681fa331301c23b9dd737f8dc41631c5896303d2e6daaf969dfc2771bd3</citedby><cites>FETCH-LOGICAL-c4546-e0ff79681fa331301c23b9dd737f8dc41631c5896303d2e6daaf969dfc2771bd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20792427$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Suguro, Masahiro</creatorcontrib><creatorcontrib>Iwasa, Shigeyuki</creatorcontrib><creatorcontrib>Nakahara, Kentaro</creatorcontrib><title>Fabrication of a Practical and Polymer-Rich Organic Radical Polymer Electrode and its Rate Dependence</title><title>Macromolecular rapid communications.</title><addtitle>Macromol. Rapid Commun</addtitle><description>A practical and polymer‐rich organic radical cathode that contains 80 wt.‐% poly(4‐vinyloxy‐2,2,6,6‐tetramethylpiperidine‐N‐oxyl) (PTVE) and 15 wt.‐% vapor‐grown carbon fiber (VGCF) has been fabricated. The PTVE/VGCF composite electrode shows a reversible redox peak at 3.56 V (vs Li/Li+) in cyclic voltammetry. A coin‐type cell with the PTVE/VGCF composite electrode as the cathode and lithium metal as the anode has also been fabricated and used for charge/discharge measurements. When the cell was discharged at 0.3 mA · cm−2 (1 C), a capacity of 104 mAh · g−1, which is 77% of PTVE's theoretical capacity (135 mAh · g−1), was obtained. When it was discharged at 9.0 mA · cm−2 (30 C), its capacity was 52% of the capacity it had when it was discharged at 0.3 mA · cm−2 (1 C). Even when discharged at 24 mA · cm−2 (80 C), it surprisingly had 32% of the capacity it had when discharged at 0.3 mA · cm−2. The observed rate dependence shows that the polymer‐rich electrode could discharge over 50% of the cell capacity in two minutes and over 30% within one minute.</description><subject>Applied sciences</subject><subject>charge transfer</subject><subject>Direct energy conversion and energy accumulation</subject><subject>Electrical engineering. Electrical power engineering</subject><subject>Electrical power engineering</subject><subject>Electrochemical conversion: primary and secondary batteries, fuel cells</subject><subject>electrochemistry</subject><subject>electrode</subject><subject>Exact sciences and technology</subject><subject>lithium ion</subject><subject>Organic polymers</subject><subject>organic radical polymer</subject><subject>Physicochemistry of polymers</subject><subject>Polymers with particular properties</subject><subject>Preparation, kinetics, thermodynamics, mechanism and catalysts</subject><subject>rechargeable battery</subject><subject>TEMPO</subject><issn>1022-1336</issn><issn>1521-3927</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNqFkEtPAyEURidGE59b12x0N_UCM0xZan3UpD5SNSZuCIWLotOZCmO0_160TePOFTfc832Ek2X7FHoUgB1NdTA9BtAHKECsZVu0ZDTnklXraQbGcsq52My2Y3yFhBXAtjI815Pgje5825DWEU1ugzZduqmJbiy5bev5FEM-9uaF3IRn3XhDxtr-AsslOavRdKG1-BvxXUxEh-QUZ9hYbAzuZhtO1xH3ludO9nB-dj8Y5qObi8vB8Sg3RVmIHMG5Soo-dZpzyoEaxifS2opXrm9NQQWnpuxLwYFbhsJq7aSQ1hlWVXRi-U52uOidhfb9A2Onpj4arGvdYPsRFS95IaDkCewtQBPaGAM6NQs-CZwrCurHpvqxqVY2U-Bg2axj-roLujE-rlIMKskKViVOLrhPX-P8n1Z1dTwe_H0jX2R97PBrldXhTYmkoFSP1xfq5KmQQ3F6pwb8G-oTlMQ</recordid><startdate>20081022</startdate><enddate>20081022</enddate><creator>Suguro, Masahiro</creator><creator>Iwasa, Shigeyuki</creator><creator>Nakahara, Kentaro</creator><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><general>Wiley</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20081022</creationdate><title>Fabrication of a Practical and Polymer-Rich Organic Radical Polymer Electrode and its Rate Dependence</title><author>Suguro, Masahiro ; Iwasa, Shigeyuki ; Nakahara, Kentaro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4546-e0ff79681fa331301c23b9dd737f8dc41631c5896303d2e6daaf969dfc2771bd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Applied sciences</topic><topic>charge transfer</topic><topic>Direct energy conversion and energy accumulation</topic><topic>Electrical engineering. Electrical power engineering</topic><topic>Electrical power engineering</topic><topic>Electrochemical conversion: primary and secondary batteries, fuel cells</topic><topic>electrochemistry</topic><topic>electrode</topic><topic>Exact sciences and technology</topic><topic>lithium ion</topic><topic>Organic polymers</topic><topic>organic radical polymer</topic><topic>Physicochemistry of polymers</topic><topic>Polymers with particular properties</topic><topic>Preparation, kinetics, thermodynamics, mechanism and catalysts</topic><topic>rechargeable battery</topic><topic>TEMPO</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Suguro, Masahiro</creatorcontrib><creatorcontrib>Iwasa, Shigeyuki</creatorcontrib><creatorcontrib>Nakahara, Kentaro</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Macromolecular rapid communications.</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Suguro, Masahiro</au><au>Iwasa, Shigeyuki</au><au>Nakahara, Kentaro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fabrication of a Practical and Polymer-Rich Organic Radical Polymer Electrode and its Rate Dependence</atitle><jtitle>Macromolecular rapid communications.</jtitle><addtitle>Macromol. Rapid Commun</addtitle><date>2008-10-22</date><risdate>2008</risdate><volume>29</volume><issue>20</issue><spage>1635</spage><epage>1639</epage><pages>1635-1639</pages><issn>1022-1336</issn><eissn>1521-3927</eissn><abstract>A practical and polymer‐rich organic radical cathode that contains 80 wt.‐% poly(4‐vinyloxy‐2,2,6,6‐tetramethylpiperidine‐N‐oxyl) (PTVE) and 15 wt.‐% vapor‐grown carbon fiber (VGCF) has been fabricated. The PTVE/VGCF composite electrode shows a reversible redox peak at 3.56 V (vs Li/Li+) in cyclic voltammetry. A coin‐type cell with the PTVE/VGCF composite electrode as the cathode and lithium metal as the anode has also been fabricated and used for charge/discharge measurements. When the cell was discharged at 0.3 mA · cm−2 (1 C), a capacity of 104 mAh · g−1, which is 77% of PTVE's theoretical capacity (135 mAh · g−1), was obtained. When it was discharged at 9.0 mA · cm−2 (30 C), its capacity was 52% of the capacity it had when it was discharged at 0.3 mA · cm−2 (1 C). Even when discharged at 24 mA · cm−2 (80 C), it surprisingly had 32% of the capacity it had when discharged at 0.3 mA · cm−2. The observed rate dependence shows that the polymer‐rich electrode could discharge over 50% of the cell capacity in two minutes and over 30% within one minute.</abstract><cop>Weinheim</cop><pub>WILEY-VCH Verlag</pub><doi>10.1002/marc.200800406</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1022-1336 |
ispartof | Macromolecular rapid communications., 2008-10, Vol.29 (20), p.1635-1639 |
issn | 1022-1336 1521-3927 |
language | eng |
recordid | cdi_proquest_miscellaneous_35346053 |
source | Wiley |
subjects | Applied sciences charge transfer Direct energy conversion and energy accumulation Electrical engineering. Electrical power engineering Electrical power engineering Electrochemical conversion: primary and secondary batteries, fuel cells electrochemistry electrode Exact sciences and technology lithium ion Organic polymers organic radical polymer Physicochemistry of polymers Polymers with particular properties Preparation, kinetics, thermodynamics, mechanism and catalysts rechargeable battery TEMPO |
title | Fabrication of a Practical and Polymer-Rich Organic Radical Polymer Electrode and its Rate Dependence |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T16%3A32%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fabrication%20of%20a%20Practical%20and%20Polymer-Rich%20Organic%20Radical%20Polymer%20Electrode%20and%20its%20Rate%20Dependence&rft.jtitle=Macromolecular%20rapid%20communications.&rft.au=Suguro,%20Masahiro&rft.date=2008-10-22&rft.volume=29&rft.issue=20&rft.spage=1635&rft.epage=1639&rft.pages=1635-1639&rft.issn=1022-1336&rft.eissn=1521-3927&rft_id=info:doi/10.1002/marc.200800406&rft_dat=%3Cproquest_cross%3E35346053%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4546-e0ff79681fa331301c23b9dd737f8dc41631c5896303d2e6daaf969dfc2771bd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=35346053&rft_id=info:pmid/&rfr_iscdi=true |