Loading…
Application of passive soil gas technology to determine the source and extent of a PCE groundwater plume in an urban environment
In situations where groundwater supplies have been impacted by volatile organic compounds (VOCs), such as tetrachloroethene (PCE), and the source has not been identified, the costs to identify the source and plume migration patterns may be extremely high. The costs for an investigation increase with...
Saved in:
Published in: | Remediation (New York, N.Y.) N.Y.), 2008-09, Vol.18 (4), p.55-62 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In situations where groundwater supplies have been impacted by volatile organic compounds (VOCs), such as tetrachloroethene (PCE), and the source has not been identified, the costs to identify the source and plume migration patterns may be extremely high. The costs for an investigation increase with the number and depth of borings and the number of samples that are collected and analyzed. An environmental investigator and the Arizona Department of Environmental Quality (ADEQ) have successfully utilized passive soil gas (PSG) surveys in Arizona to cost‐effectively investigate VOC impacts to groundwater and identify potential sources of impact. PSG surveys are minimally intrusive, and more samples can be collected for the same cost when compared to active soil gas surveys and conventional soil and groundwater sampling programs. The result is a surficial representation of the contaminant plume and the location of “hot spots,'' which are the potential sources. This provides a better understanding of the nature and extent of the impact and allows for a focused subsurface investigation, which subsequently reduces drilling and sampling costs. © 2008 Wiley Periodicals, Inc. |
---|---|
ISSN: | 1051-5658 1520-6831 |
DOI: | 10.1002/rem.20182 |