Loading…

A new smoothed aggregation multigrid method for anisotropic problems

A new prolongator is proposed for smoothed aggregation (SA) multigrid. The proposed prolongator addresses a limitation of standard SA when it is applied to anisotropic problems. For anisotropic problems, it is fairly standard to generate small aggregates (used to mimic semi‐coarsening) in order to c...

Full description

Saved in:
Bibliographic Details
Published in:Numerical linear algebra with applications 2009-01, Vol.16 (1), p.19-37
Main Authors: Gee, Michael W., Hu, Jonathan J., Tuminaro, Raymond S.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3963-ead386b12561cd9e0b12c979d5fb7b87fc67323be7d5809d674fb9a5807002d03
cites cdi_FETCH-LOGICAL-c3963-ead386b12561cd9e0b12c979d5fb7b87fc67323be7d5809d674fb9a5807002d03
container_end_page 37
container_issue 1
container_start_page 19
container_title Numerical linear algebra with applications
container_volume 16
creator Gee, Michael W.
Hu, Jonathan J.
Tuminaro, Raymond S.
description A new prolongator is proposed for smoothed aggregation (SA) multigrid. The proposed prolongator addresses a limitation of standard SA when it is applied to anisotropic problems. For anisotropic problems, it is fairly standard to generate small aggregates (used to mimic semi‐coarsening) in order to coarsen only in directions of strong coupling. Although beneficial to convergence, this can lead to a prohibitively large number of non‐zeros in the standard SA prolongator and the corresponding coarse discretization operator. To avoid this, the new prolongator modifies the standard prolongator by shifting support (non‐zeros within a prolongator column) from one aggregate to another to satisfy a specified non‐zero pattern. This leads to a sparser operator that can be used effectively within a multigrid V‐cycle. The key to this algorithm is that it preserves certain null space interpolation properties that are central to SA for both scalar and systems of partial differential equations (PDEs). We present two‐dimensional and three‐dimensional numerical experiments to demonstrate that the new method is competitive with standard SA for scalar problems, and significantly better for problems arising from PDE systems. Copyright © 2008 John Wiley & Sons, Ltd.
doi_str_mv 10.1002/nla.593
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_35539640</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>35539640</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3963-ead386b12561cd9e0b12c979d5fb7b87fc67323be7d5809d674fb9a5807002d03</originalsourceid><addsrcrecordid>eNp10EFPwjAUB_DGaCKi8Sv0pAcz7Fba0iOiooZgYjAcm259g-q2YjuCfHtLZrx56v_wy3uvf4QuUzJICclum0oPmKRHqJcSKZOUEX58yIIkjGbsFJ2F8EEI4RH10P0YN7DDoXauXYPBerXysNKtdQ2ut1VrV94aXEO7dgaXzmPd2OBa7za2wBvv8grqcI5OSl0FuPh9--j98WExeUpmr9PnyXiWFFRymoA2dMTzNGM8LYwEEmMhhTSszEU-EmXBBc1oDsKwEZGGi2GZSx2ziB8zhPbRVTc3Lv7aQmhVbUMBVaUbcNugKGNx0fAArztYeBeCh1JtvK2136uUqENLKrakYgFR3nRyZyvY_8fUfDbudNJpG1r4_tPaf6p4umBqOZ-q-d10wd-WL2pCfwBU-Xd8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>35539640</pqid></control><display><type>article</type><title>A new smoothed aggregation multigrid method for anisotropic problems</title><source>Wiley</source><creator>Gee, Michael W. ; Hu, Jonathan J. ; Tuminaro, Raymond S.</creator><creatorcontrib>Gee, Michael W. ; Hu, Jonathan J. ; Tuminaro, Raymond S.</creatorcontrib><description>A new prolongator is proposed for smoothed aggregation (SA) multigrid. The proposed prolongator addresses a limitation of standard SA when it is applied to anisotropic problems. For anisotropic problems, it is fairly standard to generate small aggregates (used to mimic semi‐coarsening) in order to coarsen only in directions of strong coupling. Although beneficial to convergence, this can lead to a prohibitively large number of non‐zeros in the standard SA prolongator and the corresponding coarse discretization operator. To avoid this, the new prolongator modifies the standard prolongator by shifting support (non‐zeros within a prolongator column) from one aggregate to another to satisfy a specified non‐zero pattern. This leads to a sparser operator that can be used effectively within a multigrid V‐cycle. The key to this algorithm is that it preserves certain null space interpolation properties that are central to SA for both scalar and systems of partial differential equations (PDEs). We present two‐dimensional and three‐dimensional numerical experiments to demonstrate that the new method is competitive with standard SA for scalar problems, and significantly better for problems arising from PDE systems. Copyright © 2008 John Wiley &amp; Sons, Ltd.</description><identifier>ISSN: 1070-5325</identifier><identifier>EISSN: 1099-1506</identifier><identifier>DOI: 10.1002/nla.593</identifier><language>eng</language><publisher>Chichester, UK: John Wiley &amp; Sons, Ltd</publisher><subject>algebraic multigrid ; AMG ; anisotropy ; multigrid ; smoothed aggregation</subject><ispartof>Numerical linear algebra with applications, 2009-01, Vol.16 (1), p.19-37</ispartof><rights>Copyright © 2008 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3963-ead386b12561cd9e0b12c979d5fb7b87fc67323be7d5809d674fb9a5807002d03</citedby><cites>FETCH-LOGICAL-c3963-ead386b12561cd9e0b12c979d5fb7b87fc67323be7d5809d674fb9a5807002d03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Gee, Michael W.</creatorcontrib><creatorcontrib>Hu, Jonathan J.</creatorcontrib><creatorcontrib>Tuminaro, Raymond S.</creatorcontrib><title>A new smoothed aggregation multigrid method for anisotropic problems</title><title>Numerical linear algebra with applications</title><addtitle>Numer. Linear Algebra Appl</addtitle><description>A new prolongator is proposed for smoothed aggregation (SA) multigrid. The proposed prolongator addresses a limitation of standard SA when it is applied to anisotropic problems. For anisotropic problems, it is fairly standard to generate small aggregates (used to mimic semi‐coarsening) in order to coarsen only in directions of strong coupling. Although beneficial to convergence, this can lead to a prohibitively large number of non‐zeros in the standard SA prolongator and the corresponding coarse discretization operator. To avoid this, the new prolongator modifies the standard prolongator by shifting support (non‐zeros within a prolongator column) from one aggregate to another to satisfy a specified non‐zero pattern. This leads to a sparser operator that can be used effectively within a multigrid V‐cycle. The key to this algorithm is that it preserves certain null space interpolation properties that are central to SA for both scalar and systems of partial differential equations (PDEs). We present two‐dimensional and three‐dimensional numerical experiments to demonstrate that the new method is competitive with standard SA for scalar problems, and significantly better for problems arising from PDE systems. Copyright © 2008 John Wiley &amp; Sons, Ltd.</description><subject>algebraic multigrid</subject><subject>AMG</subject><subject>anisotropy</subject><subject>multigrid</subject><subject>smoothed aggregation</subject><issn>1070-5325</issn><issn>1099-1506</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp10EFPwjAUB_DGaCKi8Sv0pAcz7Fba0iOiooZgYjAcm259g-q2YjuCfHtLZrx56v_wy3uvf4QuUzJICclum0oPmKRHqJcSKZOUEX58yIIkjGbsFJ2F8EEI4RH10P0YN7DDoXauXYPBerXysNKtdQ2ut1VrV94aXEO7dgaXzmPd2OBa7za2wBvv8grqcI5OSl0FuPh9--j98WExeUpmr9PnyXiWFFRymoA2dMTzNGM8LYwEEmMhhTSszEU-EmXBBc1oDsKwEZGGi2GZSx2ziB8zhPbRVTc3Lv7aQmhVbUMBVaUbcNugKGNx0fAArztYeBeCh1JtvK2136uUqENLKrakYgFR3nRyZyvY_8fUfDbudNJpG1r4_tPaf6p4umBqOZ-q-d10wd-WL2pCfwBU-Xd8</recordid><startdate>200901</startdate><enddate>200901</enddate><creator>Gee, Michael W.</creator><creator>Hu, Jonathan J.</creator><creator>Tuminaro, Raymond S.</creator><general>John Wiley &amp; Sons, Ltd</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>200901</creationdate><title>A new smoothed aggregation multigrid method for anisotropic problems</title><author>Gee, Michael W. ; Hu, Jonathan J. ; Tuminaro, Raymond S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3963-ead386b12561cd9e0b12c979d5fb7b87fc67323be7d5809d674fb9a5807002d03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>algebraic multigrid</topic><topic>AMG</topic><topic>anisotropy</topic><topic>multigrid</topic><topic>smoothed aggregation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gee, Michael W.</creatorcontrib><creatorcontrib>Hu, Jonathan J.</creatorcontrib><creatorcontrib>Tuminaro, Raymond S.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Numerical linear algebra with applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gee, Michael W.</au><au>Hu, Jonathan J.</au><au>Tuminaro, Raymond S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A new smoothed aggregation multigrid method for anisotropic problems</atitle><jtitle>Numerical linear algebra with applications</jtitle><addtitle>Numer. Linear Algebra Appl</addtitle><date>2009-01</date><risdate>2009</risdate><volume>16</volume><issue>1</issue><spage>19</spage><epage>37</epage><pages>19-37</pages><issn>1070-5325</issn><eissn>1099-1506</eissn><abstract>A new prolongator is proposed for smoothed aggregation (SA) multigrid. The proposed prolongator addresses a limitation of standard SA when it is applied to anisotropic problems. For anisotropic problems, it is fairly standard to generate small aggregates (used to mimic semi‐coarsening) in order to coarsen only in directions of strong coupling. Although beneficial to convergence, this can lead to a prohibitively large number of non‐zeros in the standard SA prolongator and the corresponding coarse discretization operator. To avoid this, the new prolongator modifies the standard prolongator by shifting support (non‐zeros within a prolongator column) from one aggregate to another to satisfy a specified non‐zero pattern. This leads to a sparser operator that can be used effectively within a multigrid V‐cycle. The key to this algorithm is that it preserves certain null space interpolation properties that are central to SA for both scalar and systems of partial differential equations (PDEs). We present two‐dimensional and three‐dimensional numerical experiments to demonstrate that the new method is competitive with standard SA for scalar problems, and significantly better for problems arising from PDE systems. Copyright © 2008 John Wiley &amp; Sons, Ltd.</abstract><cop>Chichester, UK</cop><pub>John Wiley &amp; Sons, Ltd</pub><doi>10.1002/nla.593</doi><tpages>19</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1070-5325
ispartof Numerical linear algebra with applications, 2009-01, Vol.16 (1), p.19-37
issn 1070-5325
1099-1506
language eng
recordid cdi_proquest_miscellaneous_35539640
source Wiley
subjects algebraic multigrid
AMG
anisotropy
multigrid
smoothed aggregation
title A new smoothed aggregation multigrid method for anisotropic problems
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T02%3A49%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20new%20smoothed%20aggregation%20multigrid%20method%20for%20anisotropic%20problems&rft.jtitle=Numerical%20linear%20algebra%20with%20applications&rft.au=Gee,%20Michael%20W.&rft.date=2009-01&rft.volume=16&rft.issue=1&rft.spage=19&rft.epage=37&rft.pages=19-37&rft.issn=1070-5325&rft.eissn=1099-1506&rft_id=info:doi/10.1002/nla.593&rft_dat=%3Cproquest_cross%3E35539640%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3963-ead386b12561cd9e0b12c979d5fb7b87fc67323be7d5809d674fb9a5807002d03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=35539640&rft_id=info:pmid/&rfr_iscdi=true