Loading…
Study on thermal stress in a silicon ingot during a unidirectional solidification process
A transient global model was used to obtain the solution of a thermal field within the entire furnace during a unidirectional solidification process for photovoltaics. The melt–solid interface shape was obtained by a dynamic interface tracking method. The thermal stress distribution in the silicon i...
Saved in:
Published in: | Journal of crystal growth 2008-09, Vol.310 (19), p.4330-4335 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c439t-9eead90bcedb5ab6a8a384973084f7579ef80851e7fe28b72308331a1830e84d3 |
---|---|
cites | cdi_FETCH-LOGICAL-c439t-9eead90bcedb5ab6a8a384973084f7579ef80851e7fe28b72308331a1830e84d3 |
container_end_page | 4335 |
container_issue | 19 |
container_start_page | 4330 |
container_title | Journal of crystal growth |
container_volume | 310 |
creator | Chen, X.J. Nakano, S. Liu, L.J. Kakimoto, K. |
description | A transient global model was used to obtain the solution of a thermal field within the entire furnace during a unidirectional solidification process for photovoltaics. The melt–solid interface shape was obtained by a dynamic interface tracking method. The thermal stress distribution in the silicon ingot was solved using the displacement-based thermo-elastic stress model. Furthermore, several different melt–solid interface shapes were obtained by using different growth velocities, and then the thermal stresses for different solidification times were compared. The simulation results suggested that the crucible constraint should be reduced and a longer solidification time should be used for growing a silicon ingot with low thermal stress and low dislocation density. |
doi_str_mv | 10.1016/j.jcrysgro.2008.07.027 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_35562052</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022024808006039</els_id><sourcerecordid>35562052</sourcerecordid><originalsourceid>FETCH-LOGICAL-c439t-9eead90bcedb5ab6a8a384973084f7579ef80851e7fe28b72308331a1830e84d3</originalsourceid><addsrcrecordid>eNqFkMtOwzAQRS0EEqXwCygb2CWM7SR2dqCKl1SJBbBgZTnOpLhK42InSP17HAps2fgxc-9czSHknEJGgZZX62xt_C6svMsYgMxAZMDEAZlRKXhaALBDMosnS4Hl8pichLAGiE4KM_L2PIzNLnF9Mryj3-guCYPHEBLbJzoJtrMm9my_ckPSjD4-YnnsbWM9msG6fnK4Lv5ba_RUSLbemTjhlBy1ugt49nPPyevd7cviIV0-3T8ubpapyXk1pBWibiqoDTZ1oetSS81lXgkOMm9FISpsJciComiRyVqw2OCcaio5oMwbPieX-7kx92PEMKiNDQa7TvfoxqB4UZQMChaF5V5ovAvBY6u23m603ykKaiKp1uqXpJpIKhAqkozGi58EHYzuWq97Y8Ofm4EoJZQQddd7HcZ1Py16FYzFPm72DUs1zv4X9QVmro6l</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>35562052</pqid></control><display><type>article</type><title>Study on thermal stress in a silicon ingot during a unidirectional solidification process</title><source>ScienceDirect Journals</source><creator>Chen, X.J. ; Nakano, S. ; Liu, L.J. ; Kakimoto, K.</creator><creatorcontrib>Chen, X.J. ; Nakano, S. ; Liu, L.J. ; Kakimoto, K.</creatorcontrib><description>A transient global model was used to obtain the solution of a thermal field within the entire furnace during a unidirectional solidification process for photovoltaics. The melt–solid interface shape was obtained by a dynamic interface tracking method. The thermal stress distribution in the silicon ingot was solved using the displacement-based thermo-elastic stress model. Furthermore, several different melt–solid interface shapes were obtained by using different growth velocities, and then the thermal stresses for different solidification times were compared. The simulation results suggested that the crucible constraint should be reduced and a longer solidification time should be used for growing a silicon ingot with low thermal stress and low dislocation density.</description><identifier>ISSN: 0022-0248</identifier><identifier>EISSN: 1873-5002</identifier><identifier>DOI: 10.1016/j.jcrysgro.2008.07.027</identifier><identifier>CODEN: JCRGAE</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>02.60.Cb ; 61.50.Ah ; 81.10.−h ; 81.40.Jj ; A1. Computer simulation ; A1. Heat transfer ; A1. Solidification ; A1. Stresses ; Applied sciences ; Cross-disciplinary physics: materials science; rheology ; Electronics ; Exact sciences and technology ; Materials ; Materials science ; Methods of crystal growth; physics of crystal growth ; Phase diagrams and microstructures developed by solidification and solid-solid phase transformations ; Physics ; Solidification ; Theory and models of crystal growth; physics of crystal growth, crystal morphology and orientation</subject><ispartof>Journal of crystal growth, 2008-09, Vol.310 (19), p.4330-4335</ispartof><rights>2008 Elsevier B.V.</rights><rights>2008 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c439t-9eead90bcedb5ab6a8a384973084f7579ef80851e7fe28b72308331a1830e84d3</citedby><cites>FETCH-LOGICAL-c439t-9eead90bcedb5ab6a8a384973084f7579ef80851e7fe28b72308331a1830e84d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20768060$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, X.J.</creatorcontrib><creatorcontrib>Nakano, S.</creatorcontrib><creatorcontrib>Liu, L.J.</creatorcontrib><creatorcontrib>Kakimoto, K.</creatorcontrib><title>Study on thermal stress in a silicon ingot during a unidirectional solidification process</title><title>Journal of crystal growth</title><description>A transient global model was used to obtain the solution of a thermal field within the entire furnace during a unidirectional solidification process for photovoltaics. The melt–solid interface shape was obtained by a dynamic interface tracking method. The thermal stress distribution in the silicon ingot was solved using the displacement-based thermo-elastic stress model. Furthermore, several different melt–solid interface shapes were obtained by using different growth velocities, and then the thermal stresses for different solidification times were compared. The simulation results suggested that the crucible constraint should be reduced and a longer solidification time should be used for growing a silicon ingot with low thermal stress and low dislocation density.</description><subject>02.60.Cb</subject><subject>61.50.Ah</subject><subject>81.10.−h</subject><subject>81.40.Jj</subject><subject>A1. Computer simulation</subject><subject>A1. Heat transfer</subject><subject>A1. Solidification</subject><subject>A1. Stresses</subject><subject>Applied sciences</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>Materials</subject><subject>Materials science</subject><subject>Methods of crystal growth; physics of crystal growth</subject><subject>Phase diagrams and microstructures developed by solidification and solid-solid phase transformations</subject><subject>Physics</subject><subject>Solidification</subject><subject>Theory and models of crystal growth; physics of crystal growth, crystal morphology and orientation</subject><issn>0022-0248</issn><issn>1873-5002</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNqFkMtOwzAQRS0EEqXwCygb2CWM7SR2dqCKl1SJBbBgZTnOpLhK42InSP17HAps2fgxc-9czSHknEJGgZZX62xt_C6svMsYgMxAZMDEAZlRKXhaALBDMosnS4Hl8pichLAGiE4KM_L2PIzNLnF9Mryj3-guCYPHEBLbJzoJtrMm9my_ckPSjD4-YnnsbWM9msG6fnK4Lv5ba_RUSLbemTjhlBy1ugt49nPPyevd7cviIV0-3T8ubpapyXk1pBWibiqoDTZ1oetSS81lXgkOMm9FISpsJciComiRyVqw2OCcaio5oMwbPieX-7kx92PEMKiNDQa7TvfoxqB4UZQMChaF5V5ovAvBY6u23m603ykKaiKp1uqXpJpIKhAqkozGi58EHYzuWq97Y8Ofm4EoJZQQddd7HcZ1Py16FYzFPm72DUs1zv4X9QVmro6l</recordid><startdate>20080915</startdate><enddate>20080915</enddate><creator>Chen, X.J.</creator><creator>Nakano, S.</creator><creator>Liu, L.J.</creator><creator>Kakimoto, K.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20080915</creationdate><title>Study on thermal stress in a silicon ingot during a unidirectional solidification process</title><author>Chen, X.J. ; Nakano, S. ; Liu, L.J. ; Kakimoto, K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c439t-9eead90bcedb5ab6a8a384973084f7579ef80851e7fe28b72308331a1830e84d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>02.60.Cb</topic><topic>61.50.Ah</topic><topic>81.10.−h</topic><topic>81.40.Jj</topic><topic>A1. Computer simulation</topic><topic>A1. Heat transfer</topic><topic>A1. Solidification</topic><topic>A1. Stresses</topic><topic>Applied sciences</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>Materials</topic><topic>Materials science</topic><topic>Methods of crystal growth; physics of crystal growth</topic><topic>Phase diagrams and microstructures developed by solidification and solid-solid phase transformations</topic><topic>Physics</topic><topic>Solidification</topic><topic>Theory and models of crystal growth; physics of crystal growth, crystal morphology and orientation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, X.J.</creatorcontrib><creatorcontrib>Nakano, S.</creatorcontrib><creatorcontrib>Liu, L.J.</creatorcontrib><creatorcontrib>Kakimoto, K.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of crystal growth</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, X.J.</au><au>Nakano, S.</au><au>Liu, L.J.</au><au>Kakimoto, K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Study on thermal stress in a silicon ingot during a unidirectional solidification process</atitle><jtitle>Journal of crystal growth</jtitle><date>2008-09-15</date><risdate>2008</risdate><volume>310</volume><issue>19</issue><spage>4330</spage><epage>4335</epage><pages>4330-4335</pages><issn>0022-0248</issn><eissn>1873-5002</eissn><coden>JCRGAE</coden><abstract>A transient global model was used to obtain the solution of a thermal field within the entire furnace during a unidirectional solidification process for photovoltaics. The melt–solid interface shape was obtained by a dynamic interface tracking method. The thermal stress distribution in the silicon ingot was solved using the displacement-based thermo-elastic stress model. Furthermore, several different melt–solid interface shapes were obtained by using different growth velocities, and then the thermal stresses for different solidification times were compared. The simulation results suggested that the crucible constraint should be reduced and a longer solidification time should be used for growing a silicon ingot with low thermal stress and low dislocation density.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jcrysgro.2008.07.027</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-0248 |
ispartof | Journal of crystal growth, 2008-09, Vol.310 (19), p.4330-4335 |
issn | 0022-0248 1873-5002 |
language | eng |
recordid | cdi_proquest_miscellaneous_35562052 |
source | ScienceDirect Journals |
subjects | 02.60.Cb 61.50.Ah 81.10.−h 81.40.Jj A1. Computer simulation A1. Heat transfer A1. Solidification A1. Stresses Applied sciences Cross-disciplinary physics: materials science rheology Electronics Exact sciences and technology Materials Materials science Methods of crystal growth physics of crystal growth Phase diagrams and microstructures developed by solidification and solid-solid phase transformations Physics Solidification Theory and models of crystal growth physics of crystal growth, crystal morphology and orientation |
title | Study on thermal stress in a silicon ingot during a unidirectional solidification process |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T05%3A39%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Study%20on%20thermal%20stress%20in%20a%20silicon%20ingot%20during%20a%20unidirectional%20solidification%20process&rft.jtitle=Journal%20of%20crystal%20growth&rft.au=Chen,%20X.J.&rft.date=2008-09-15&rft.volume=310&rft.issue=19&rft.spage=4330&rft.epage=4335&rft.pages=4330-4335&rft.issn=0022-0248&rft.eissn=1873-5002&rft.coden=JCRGAE&rft_id=info:doi/10.1016/j.jcrysgro.2008.07.027&rft_dat=%3Cproquest_cross%3E35562052%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c439t-9eead90bcedb5ab6a8a384973084f7579ef80851e7fe28b72308331a1830e84d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=35562052&rft_id=info:pmid/&rfr_iscdi=true |