Loading…

Study on thermal stress in a silicon ingot during a unidirectional solidification process

A transient global model was used to obtain the solution of a thermal field within the entire furnace during a unidirectional solidification process for photovoltaics. The melt–solid interface shape was obtained by a dynamic interface tracking method. The thermal stress distribution in the silicon i...

Full description

Saved in:
Bibliographic Details
Published in:Journal of crystal growth 2008-09, Vol.310 (19), p.4330-4335
Main Authors: Chen, X.J., Nakano, S., Liu, L.J., Kakimoto, K.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c439t-9eead90bcedb5ab6a8a384973084f7579ef80851e7fe28b72308331a1830e84d3
cites cdi_FETCH-LOGICAL-c439t-9eead90bcedb5ab6a8a384973084f7579ef80851e7fe28b72308331a1830e84d3
container_end_page 4335
container_issue 19
container_start_page 4330
container_title Journal of crystal growth
container_volume 310
creator Chen, X.J.
Nakano, S.
Liu, L.J.
Kakimoto, K.
description A transient global model was used to obtain the solution of a thermal field within the entire furnace during a unidirectional solidification process for photovoltaics. The melt–solid interface shape was obtained by a dynamic interface tracking method. The thermal stress distribution in the silicon ingot was solved using the displacement-based thermo-elastic stress model. Furthermore, several different melt–solid interface shapes were obtained by using different growth velocities, and then the thermal stresses for different solidification times were compared. The simulation results suggested that the crucible constraint should be reduced and a longer solidification time should be used for growing a silicon ingot with low thermal stress and low dislocation density.
doi_str_mv 10.1016/j.jcrysgro.2008.07.027
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_35562052</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022024808006039</els_id><sourcerecordid>35562052</sourcerecordid><originalsourceid>FETCH-LOGICAL-c439t-9eead90bcedb5ab6a8a384973084f7579ef80851e7fe28b72308331a1830e84d3</originalsourceid><addsrcrecordid>eNqFkMtOwzAQRS0EEqXwCygb2CWM7SR2dqCKl1SJBbBgZTnOpLhK42InSP17HAps2fgxc-9czSHknEJGgZZX62xt_C6svMsYgMxAZMDEAZlRKXhaALBDMosnS4Hl8pichLAGiE4KM_L2PIzNLnF9Mryj3-guCYPHEBLbJzoJtrMm9my_ckPSjD4-YnnsbWM9msG6fnK4Lv5ba_RUSLbemTjhlBy1ugt49nPPyevd7cviIV0-3T8ubpapyXk1pBWibiqoDTZ1oetSS81lXgkOMm9FISpsJciComiRyVqw2OCcaio5oMwbPieX-7kx92PEMKiNDQa7TvfoxqB4UZQMChaF5V5ovAvBY6u23m603ykKaiKp1uqXpJpIKhAqkozGi58EHYzuWq97Y8Ofm4EoJZQQddd7HcZ1Py16FYzFPm72DUs1zv4X9QVmro6l</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>35562052</pqid></control><display><type>article</type><title>Study on thermal stress in a silicon ingot during a unidirectional solidification process</title><source>ScienceDirect Journals</source><creator>Chen, X.J. ; Nakano, S. ; Liu, L.J. ; Kakimoto, K.</creator><creatorcontrib>Chen, X.J. ; Nakano, S. ; Liu, L.J. ; Kakimoto, K.</creatorcontrib><description>A transient global model was used to obtain the solution of a thermal field within the entire furnace during a unidirectional solidification process for photovoltaics. The melt–solid interface shape was obtained by a dynamic interface tracking method. The thermal stress distribution in the silicon ingot was solved using the displacement-based thermo-elastic stress model. Furthermore, several different melt–solid interface shapes were obtained by using different growth velocities, and then the thermal stresses for different solidification times were compared. The simulation results suggested that the crucible constraint should be reduced and a longer solidification time should be used for growing a silicon ingot with low thermal stress and low dislocation density.</description><identifier>ISSN: 0022-0248</identifier><identifier>EISSN: 1873-5002</identifier><identifier>DOI: 10.1016/j.jcrysgro.2008.07.027</identifier><identifier>CODEN: JCRGAE</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>02.60.Cb ; 61.50.Ah ; 81.10.−h ; 81.40.Jj ; A1. Computer simulation ; A1. Heat transfer ; A1. Solidification ; A1. Stresses ; Applied sciences ; Cross-disciplinary physics: materials science; rheology ; Electronics ; Exact sciences and technology ; Materials ; Materials science ; Methods of crystal growth; physics of crystal growth ; Phase diagrams and microstructures developed by solidification and solid-solid phase transformations ; Physics ; Solidification ; Theory and models of crystal growth; physics of crystal growth, crystal morphology and orientation</subject><ispartof>Journal of crystal growth, 2008-09, Vol.310 (19), p.4330-4335</ispartof><rights>2008 Elsevier B.V.</rights><rights>2008 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c439t-9eead90bcedb5ab6a8a384973084f7579ef80851e7fe28b72308331a1830e84d3</citedby><cites>FETCH-LOGICAL-c439t-9eead90bcedb5ab6a8a384973084f7579ef80851e7fe28b72308331a1830e84d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=20768060$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, X.J.</creatorcontrib><creatorcontrib>Nakano, S.</creatorcontrib><creatorcontrib>Liu, L.J.</creatorcontrib><creatorcontrib>Kakimoto, K.</creatorcontrib><title>Study on thermal stress in a silicon ingot during a unidirectional solidification process</title><title>Journal of crystal growth</title><description>A transient global model was used to obtain the solution of a thermal field within the entire furnace during a unidirectional solidification process for photovoltaics. The melt–solid interface shape was obtained by a dynamic interface tracking method. The thermal stress distribution in the silicon ingot was solved using the displacement-based thermo-elastic stress model. Furthermore, several different melt–solid interface shapes were obtained by using different growth velocities, and then the thermal stresses for different solidification times were compared. The simulation results suggested that the crucible constraint should be reduced and a longer solidification time should be used for growing a silicon ingot with low thermal stress and low dislocation density.</description><subject>02.60.Cb</subject><subject>61.50.Ah</subject><subject>81.10.−h</subject><subject>81.40.Jj</subject><subject>A1. Computer simulation</subject><subject>A1. Heat transfer</subject><subject>A1. Solidification</subject><subject>A1. Stresses</subject><subject>Applied sciences</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>Materials</subject><subject>Materials science</subject><subject>Methods of crystal growth; physics of crystal growth</subject><subject>Phase diagrams and microstructures developed by solidification and solid-solid phase transformations</subject><subject>Physics</subject><subject>Solidification</subject><subject>Theory and models of crystal growth; physics of crystal growth, crystal morphology and orientation</subject><issn>0022-0248</issn><issn>1873-5002</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNqFkMtOwzAQRS0EEqXwCygb2CWM7SR2dqCKl1SJBbBgZTnOpLhK42InSP17HAps2fgxc-9czSHknEJGgZZX62xt_C6svMsYgMxAZMDEAZlRKXhaALBDMosnS4Hl8pichLAGiE4KM_L2PIzNLnF9Mryj3-guCYPHEBLbJzoJtrMm9my_ckPSjD4-YnnsbWM9msG6fnK4Lv5ba_RUSLbemTjhlBy1ugt49nPPyevd7cviIV0-3T8ubpapyXk1pBWibiqoDTZ1oetSS81lXgkOMm9FISpsJciComiRyVqw2OCcaio5oMwbPieX-7kx92PEMKiNDQa7TvfoxqB4UZQMChaF5V5ovAvBY6u23m603ykKaiKp1uqXpJpIKhAqkozGi58EHYzuWq97Y8Ofm4EoJZQQddd7HcZ1Py16FYzFPm72DUs1zv4X9QVmro6l</recordid><startdate>20080915</startdate><enddate>20080915</enddate><creator>Chen, X.J.</creator><creator>Nakano, S.</creator><creator>Liu, L.J.</creator><creator>Kakimoto, K.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20080915</creationdate><title>Study on thermal stress in a silicon ingot during a unidirectional solidification process</title><author>Chen, X.J. ; Nakano, S. ; Liu, L.J. ; Kakimoto, K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c439t-9eead90bcedb5ab6a8a384973084f7579ef80851e7fe28b72308331a1830e84d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>02.60.Cb</topic><topic>61.50.Ah</topic><topic>81.10.−h</topic><topic>81.40.Jj</topic><topic>A1. Computer simulation</topic><topic>A1. Heat transfer</topic><topic>A1. Solidification</topic><topic>A1. Stresses</topic><topic>Applied sciences</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>Materials</topic><topic>Materials science</topic><topic>Methods of crystal growth; physics of crystal growth</topic><topic>Phase diagrams and microstructures developed by solidification and solid-solid phase transformations</topic><topic>Physics</topic><topic>Solidification</topic><topic>Theory and models of crystal growth; physics of crystal growth, crystal morphology and orientation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, X.J.</creatorcontrib><creatorcontrib>Nakano, S.</creatorcontrib><creatorcontrib>Liu, L.J.</creatorcontrib><creatorcontrib>Kakimoto, K.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of crystal growth</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, X.J.</au><au>Nakano, S.</au><au>Liu, L.J.</au><au>Kakimoto, K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Study on thermal stress in a silicon ingot during a unidirectional solidification process</atitle><jtitle>Journal of crystal growth</jtitle><date>2008-09-15</date><risdate>2008</risdate><volume>310</volume><issue>19</issue><spage>4330</spage><epage>4335</epage><pages>4330-4335</pages><issn>0022-0248</issn><eissn>1873-5002</eissn><coden>JCRGAE</coden><abstract>A transient global model was used to obtain the solution of a thermal field within the entire furnace during a unidirectional solidification process for photovoltaics. The melt–solid interface shape was obtained by a dynamic interface tracking method. The thermal stress distribution in the silicon ingot was solved using the displacement-based thermo-elastic stress model. Furthermore, several different melt–solid interface shapes were obtained by using different growth velocities, and then the thermal stresses for different solidification times were compared. The simulation results suggested that the crucible constraint should be reduced and a longer solidification time should be used for growing a silicon ingot with low thermal stress and low dislocation density.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jcrysgro.2008.07.027</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-0248
ispartof Journal of crystal growth, 2008-09, Vol.310 (19), p.4330-4335
issn 0022-0248
1873-5002
language eng
recordid cdi_proquest_miscellaneous_35562052
source ScienceDirect Journals
subjects 02.60.Cb
61.50.Ah
81.10.−h
81.40.Jj
A1. Computer simulation
A1. Heat transfer
A1. Solidification
A1. Stresses
Applied sciences
Cross-disciplinary physics: materials science
rheology
Electronics
Exact sciences and technology
Materials
Materials science
Methods of crystal growth
physics of crystal growth
Phase diagrams and microstructures developed by solidification and solid-solid phase transformations
Physics
Solidification
Theory and models of crystal growth
physics of crystal growth, crystal morphology and orientation
title Study on thermal stress in a silicon ingot during a unidirectional solidification process
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T05%3A39%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Study%20on%20thermal%20stress%20in%20a%20silicon%20ingot%20during%20a%20unidirectional%20solidification%20process&rft.jtitle=Journal%20of%20crystal%20growth&rft.au=Chen,%20X.J.&rft.date=2008-09-15&rft.volume=310&rft.issue=19&rft.spage=4330&rft.epage=4335&rft.pages=4330-4335&rft.issn=0022-0248&rft.eissn=1873-5002&rft.coden=JCRGAE&rft_id=info:doi/10.1016/j.jcrysgro.2008.07.027&rft_dat=%3Cproquest_cross%3E35562052%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c439t-9eead90bcedb5ab6a8a384973084f7579ef80851e7fe28b72308331a1830e84d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=35562052&rft_id=info:pmid/&rfr_iscdi=true