Loading…

Quasi-copulas with a given sub-diagonal section

As is well known, the Fréchet–Hoeffding bounds are the best possible for both copulas and quasi-copulas: for every (quasi-) copula Q , max { x + y − 1 , 0 } ≤ Q ( x , y ) ≤ min { x , y } for all x , y ∈ [ 0 , 1 ] . Sharper bounds hold when the (quasi-)copulas take prescribed values, e.g., along thei...

Full description

Saved in:
Bibliographic Details
Published in:Nonlinear analysis 2008-12, Vol.69 (12), p.4654-4673
Main Authors: Quesada-Molina, José Juan, Saminger-Platz, Susanne, Sempi, Carlo
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c355t-57d48334360e5d7f980e602ef90ec8ed12e01f771471e9707be7c7d892e16f373
cites cdi_FETCH-LOGICAL-c355t-57d48334360e5d7f980e602ef90ec8ed12e01f771471e9707be7c7d892e16f373
container_end_page 4673
container_issue 12
container_start_page 4654
container_title Nonlinear analysis
container_volume 69
creator Quesada-Molina, José Juan
Saminger-Platz, Susanne
Sempi, Carlo
description As is well known, the Fréchet–Hoeffding bounds are the best possible for both copulas and quasi-copulas: for every (quasi-) copula Q , max { x + y − 1 , 0 } ≤ Q ( x , y ) ≤ min { x , y } for all x , y ∈ [ 0 , 1 ] . Sharper bounds hold when the (quasi-)copulas take prescribed values, e.g., along their diagonal or horizontal resp. vertical sections. Here we pursue two goals: first, we investigate construction methods for (quasi-)copulas with a given sub-diagonal section, i.e., with prescribed values along the straight line segment joining the points ( x 0 , 0 ) and ( 1 , 1 − x 0 ) for x 0 ∈ ] 0 , 1 [ . Then, we determine the best-possible bounds for sets of quasi-copulas with a given sub-diagonal section.
doi_str_mv 10.1016/j.na.2007.11.021
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_35586119</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0362546X07007754</els_id><sourcerecordid>35586119</sourcerecordid><originalsourceid>FETCH-LOGICAL-c355t-57d48334360e5d7f980e602ef90ec8ed12e01f771471e9707be7c7d892e16f373</originalsourceid><addsrcrecordid>eNp1kL9PwzAQhS0EEqWwM2aBLemdndgJG6r4JVVCSCCxWa5zKa5Sp9hJEf89qYrYmG753nu6j7FLhAwB5WydeZNxAJUhZsDxiE2wVCItOBbHbAJC8rTI5fspO4txDQCohJyw2ctgoktttx1aE5Mv138kJlm5HfkkDsu0dmbVedMmkWzvOn_OThrTRrr4vVP2dn_3On9MF88PT_PbRWpFUfRpoeq8FCIXEqioVVOVQBI4NRWQLalGToCNUpgrpEqBWpKyqi4rTigbocSUXR96t6H7HCj2euOipbY1nroh6nGllIjVCMIBtKGLMVCjt8FtTPjWCHpvRq-1N3pvRiPq0cwYufrtNtGatgnGWxf_chzKKuc5jNzNgaPx0Z2joKN15C3VLow2dN25_0d-ACFVdd4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>35586119</pqid></control><display><type>article</type><title>Quasi-copulas with a given sub-diagonal section</title><source>ScienceDirect Freedom Collection</source><source>Backfile Package - Mathematics (Legacy) [YMT]</source><creator>Quesada-Molina, José Juan ; Saminger-Platz, Susanne ; Sempi, Carlo</creator><creatorcontrib>Quesada-Molina, José Juan ; Saminger-Platz, Susanne ; Sempi, Carlo</creatorcontrib><description>As is well known, the Fréchet–Hoeffding bounds are the best possible for both copulas and quasi-copulas: for every (quasi-) copula Q , max { x + y − 1 , 0 } ≤ Q ( x , y ) ≤ min { x , y } for all x , y ∈ [ 0 , 1 ] . Sharper bounds hold when the (quasi-)copulas take prescribed values, e.g., along their diagonal or horizontal resp. vertical sections. Here we pursue two goals: first, we investigate construction methods for (quasi-)copulas with a given sub-diagonal section, i.e., with prescribed values along the straight line segment joining the points ( x 0 , 0 ) and ( 1 , 1 − x 0 ) for x 0 ∈ ] 0 , 1 [ . Then, we determine the best-possible bounds for sets of quasi-copulas with a given sub-diagonal section.</description><identifier>ISSN: 0362-546X</identifier><identifier>EISSN: 1873-5215</identifier><identifier>DOI: 10.1016/j.na.2007.11.021</identifier><identifier>CODEN: NOANDD</identifier><language>eng</language><publisher>Amsterdam: Elsevier Ltd</publisher><subject>Copula ; Exact sciences and technology ; Mathematical analysis ; Mathematics ; Quasi-copula ; Sciences and techniques of general use ; Sub-diagonal (section)</subject><ispartof>Nonlinear analysis, 2008-12, Vol.69 (12), p.4654-4673</ispartof><rights>2007 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c355t-57d48334360e5d7f980e602ef90ec8ed12e01f771471e9707be7c7d892e16f373</citedby><cites>FETCH-LOGICAL-c355t-57d48334360e5d7f980e602ef90ec8ed12e01f771471e9707be7c7d892e16f373</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0362546X07007754$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3551,27903,27904,45981</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=20894240$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Quesada-Molina, José Juan</creatorcontrib><creatorcontrib>Saminger-Platz, Susanne</creatorcontrib><creatorcontrib>Sempi, Carlo</creatorcontrib><title>Quasi-copulas with a given sub-diagonal section</title><title>Nonlinear analysis</title><description>As is well known, the Fréchet–Hoeffding bounds are the best possible for both copulas and quasi-copulas: for every (quasi-) copula Q , max { x + y − 1 , 0 } ≤ Q ( x , y ) ≤ min { x , y } for all x , y ∈ [ 0 , 1 ] . Sharper bounds hold when the (quasi-)copulas take prescribed values, e.g., along their diagonal or horizontal resp. vertical sections. Here we pursue two goals: first, we investigate construction methods for (quasi-)copulas with a given sub-diagonal section, i.e., with prescribed values along the straight line segment joining the points ( x 0 , 0 ) and ( 1 , 1 − x 0 ) for x 0 ∈ ] 0 , 1 [ . Then, we determine the best-possible bounds for sets of quasi-copulas with a given sub-diagonal section.</description><subject>Copula</subject><subject>Exact sciences and technology</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Quasi-copula</subject><subject>Sciences and techniques of general use</subject><subject>Sub-diagonal (section)</subject><issn>0362-546X</issn><issn>1873-5215</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNp1kL9PwzAQhS0EEqWwM2aBLemdndgJG6r4JVVCSCCxWa5zKa5Sp9hJEf89qYrYmG753nu6j7FLhAwB5WydeZNxAJUhZsDxiE2wVCItOBbHbAJC8rTI5fspO4txDQCohJyw2ctgoktttx1aE5Mv138kJlm5HfkkDsu0dmbVedMmkWzvOn_OThrTRrr4vVP2dn_3On9MF88PT_PbRWpFUfRpoeq8FCIXEqioVVOVQBI4NRWQLalGToCNUpgrpEqBWpKyqi4rTigbocSUXR96t6H7HCj2euOipbY1nroh6nGllIjVCMIBtKGLMVCjt8FtTPjWCHpvRq-1N3pvRiPq0cwYufrtNtGatgnGWxf_chzKKuc5jNzNgaPx0Z2joKN15C3VLow2dN25_0d-ACFVdd4</recordid><startdate>20081215</startdate><enddate>20081215</enddate><creator>Quesada-Molina, José Juan</creator><creator>Saminger-Platz, Susanne</creator><creator>Sempi, Carlo</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20081215</creationdate><title>Quasi-copulas with a given sub-diagonal section</title><author>Quesada-Molina, José Juan ; Saminger-Platz, Susanne ; Sempi, Carlo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c355t-57d48334360e5d7f980e602ef90ec8ed12e01f771471e9707be7c7d892e16f373</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Copula</topic><topic>Exact sciences and technology</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Quasi-copula</topic><topic>Sciences and techniques of general use</topic><topic>Sub-diagonal (section)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Quesada-Molina, José Juan</creatorcontrib><creatorcontrib>Saminger-Platz, Susanne</creatorcontrib><creatorcontrib>Sempi, Carlo</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Nonlinear analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Quesada-Molina, José Juan</au><au>Saminger-Platz, Susanne</au><au>Sempi, Carlo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quasi-copulas with a given sub-diagonal section</atitle><jtitle>Nonlinear analysis</jtitle><date>2008-12-15</date><risdate>2008</risdate><volume>69</volume><issue>12</issue><spage>4654</spage><epage>4673</epage><pages>4654-4673</pages><issn>0362-546X</issn><eissn>1873-5215</eissn><coden>NOANDD</coden><abstract>As is well known, the Fréchet–Hoeffding bounds are the best possible for both copulas and quasi-copulas: for every (quasi-) copula Q , max { x + y − 1 , 0 } ≤ Q ( x , y ) ≤ min { x , y } for all x , y ∈ [ 0 , 1 ] . Sharper bounds hold when the (quasi-)copulas take prescribed values, e.g., along their diagonal or horizontal resp. vertical sections. Here we pursue two goals: first, we investigate construction methods for (quasi-)copulas with a given sub-diagonal section, i.e., with prescribed values along the straight line segment joining the points ( x 0 , 0 ) and ( 1 , 1 − x 0 ) for x 0 ∈ ] 0 , 1 [ . Then, we determine the best-possible bounds for sets of quasi-copulas with a given sub-diagonal section.</abstract><cop>Amsterdam</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.na.2007.11.021</doi><tpages>20</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0362-546X
ispartof Nonlinear analysis, 2008-12, Vol.69 (12), p.4654-4673
issn 0362-546X
1873-5215
language eng
recordid cdi_proquest_miscellaneous_35586119
source ScienceDirect Freedom Collection; Backfile Package - Mathematics (Legacy) [YMT]
subjects Copula
Exact sciences and technology
Mathematical analysis
Mathematics
Quasi-copula
Sciences and techniques of general use
Sub-diagonal (section)
title Quasi-copulas with a given sub-diagonal section
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T23%3A39%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quasi-copulas%20with%20a%20given%20sub-diagonal%20section&rft.jtitle=Nonlinear%20analysis&rft.au=Quesada-Molina,%20Jos%C3%A9%20Juan&rft.date=2008-12-15&rft.volume=69&rft.issue=12&rft.spage=4654&rft.epage=4673&rft.pages=4654-4673&rft.issn=0362-546X&rft.eissn=1873-5215&rft.coden=NOANDD&rft_id=info:doi/10.1016/j.na.2007.11.021&rft_dat=%3Cproquest_cross%3E35586119%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c355t-57d48334360e5d7f980e602ef90ec8ed12e01f771471e9707be7c7d892e16f373%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=35586119&rft_id=info:pmid/&rfr_iscdi=true