Loading…
Biotin-, Pyrene-, and GRGDS-Functionalized Polymers and Nanogels via ATRP and End Group Modification
Functionality, one of the key attributes of atom transfer radical polymerization (ATRP), was utilized for the synthesis of well‐controlled polymers functionalized with biotin, pyrene, and peptides. Hydroxy‐functionalized poly(oligo(ethylene oxide) monomethyl ether methacrylate) (HO‐POEOMA) was prepa...
Saved in:
Published in: | Macromolecular chemistry and physics 2008-11, Vol.209 (21), p.2179-2193 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Functionality, one of the key attributes of atom transfer radical polymerization (ATRP), was utilized for the synthesis of well‐controlled polymers functionalized with biotin, pyrene, and peptides. Hydroxy‐functionalized poly(oligo(ethylene oxide) monomethyl ether methacrylate) (HO‐POEOMA) was prepared by AGET ATRP of OEOMA initiated by 2‐hydroxyethyl 2‐bromoisobutyrate in water or in inverse miniemulsion of water/cyclohexane at ambient temperature. HO‐POEOMA was then further functionalized with biotin, pyrene, and GRGDS peptide. In addition, ATRP and click chemistry offered an efficient route for the synthesis of telechelic di‐biotin polymers. These general methods can be applied to the formation of different functional materials conjugated with proteins, dyes, nucleic acids, and drugs. |
---|---|
ISSN: | 1022-1352 1521-3935 |
DOI: | 10.1002/macp.200800337 |