Loading…

Characterization of evaporator and condenser thermal resistances of a screen mesh wicked heat pipe

The heat transfer mechanisms in the condenser and evaporator sections of a copper-water wicked heat pipe with 3 layers of screen mesh were investigated experimentally. The individual condenser and evaporator thermal resistances were measured using thermocouples on the outer wall and within the core...

Full description

Saved in:
Bibliographic Details
Published in:International journal of heat and mass transfer 2008-12, Vol.51 (25), p.6039-6046
Main Authors: Kempers, R., Robinson, A.J., Ewing, D., Ching, C.Y.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c403t-3676cfae887f0c9779f317385e4f49e82d625d92e059f8d888bf7be26d569b6d3
cites cdi_FETCH-LOGICAL-c403t-3676cfae887f0c9779f317385e4f49e82d625d92e059f8d888bf7be26d569b6d3
container_end_page 6046
container_issue 25
container_start_page 6039
container_title International journal of heat and mass transfer
container_volume 51
creator Kempers, R.
Robinson, A.J.
Ewing, D.
Ching, C.Y.
description The heat transfer mechanisms in the condenser and evaporator sections of a copper-water wicked heat pipe with 3 layers of screen mesh were investigated experimentally. The individual condenser and evaporator thermal resistances were measured using thermocouples on the outer wall and within the core of the heat pipe. The heat transfer in the condenser section was found to be only by conduction. In the evaporator, however, either conduction or boiling heat transfer can occur. The transition between the two modes was found to be dependent on the vapor pressure and heat flux, and was reasonably well predicted by the bubble nucleation criterion outlined by Van Stralen and Cole [S. Van Stralen, R. Cole, Boiling Phenomena, vol. 1, McGraw-Hill Inc., 1979]. The experimental data for the boiling heat transfer in the evaporator was well correlated by [ St][ Pr] 0.6[ N p] 0.2 = 0.13[ Re] −1.43. A composite heat transfer model for the heat pipe is proposed that considers both conduction and boiling heat transfer in the evaporator.
doi_str_mv 10.1016/j.ijheatmasstransfer.2008.04.001
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_35659293</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0017931008002068</els_id><sourcerecordid>35659293</sourcerecordid><originalsourceid>FETCH-LOGICAL-c403t-3676cfae887f0c9779f317385e4f49e82d625d92e059f8d888bf7be26d569b6d3</originalsourceid><addsrcrecordid>eNqNkE1vFDEMhiNUJLaF_5ALiMtMk8xMPm6gVQtFlbjAOcomjjbLfBGnRfDryWgrLr1wsmw9em0_hLznrOWMy-tTm05HcGVyiCW7GSPkVjCmW9a3jPEXZMe1Mo3g2lyQXZ2oxnScvSKXiKetZb3ckcP-6LLzBXL640paZrpECo9uXbIrS6ZuDtQvc4AZIdNyhDy5kWbAhMXNHnDjHUWfAWY6AR7pr-R_QKDbcXRNK7wmL6MbEd481Svy_fbm2_5zc__1093-433je9aVppNK-uhAaxWZN0qZ2HHV6QH62BvQIkgxBCOADSbqoLU-RHUAIcMgzUGG7oq8O-euefn5AFjslNDDOLoZlge03SAHI0xXwQ9n0OcFMUO0a06Ty78tZ3aTa0_2uVy7ybWst9VdjXj7tMuhd2OsjE_4L0cww3rRq8p9OXNQH39MNQV9guotpAy-2LCk_1_6F2MNnjM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>35659293</pqid></control><display><type>article</type><title>Characterization of evaporator and condenser thermal resistances of a screen mesh wicked heat pipe</title><source>ScienceDirect Freedom Collection</source><creator>Kempers, R. ; Robinson, A.J. ; Ewing, D. ; Ching, C.Y.</creator><creatorcontrib>Kempers, R. ; Robinson, A.J. ; Ewing, D. ; Ching, C.Y.</creatorcontrib><description>The heat transfer mechanisms in the condenser and evaporator sections of a copper-water wicked heat pipe with 3 layers of screen mesh were investigated experimentally. The individual condenser and evaporator thermal resistances were measured using thermocouples on the outer wall and within the core of the heat pipe. The heat transfer in the condenser section was found to be only by conduction. In the evaporator, however, either conduction or boiling heat transfer can occur. The transition between the two modes was found to be dependent on the vapor pressure and heat flux, and was reasonably well predicted by the bubble nucleation criterion outlined by Van Stralen and Cole [S. Van Stralen, R. Cole, Boiling Phenomena, vol. 1, McGraw-Hill Inc., 1979]. The experimental data for the boiling heat transfer in the evaporator was well correlated by [ St][ Pr] 0.6[ N p] 0.2 = 0.13[ Re] −1.43. A composite heat transfer model for the heat pipe is proposed that considers both conduction and boiling heat transfer in the evaporator.</description><identifier>ISSN: 0017-9310</identifier><identifier>EISSN: 1879-2189</identifier><identifier>DOI: 10.1016/j.ijheatmasstransfer.2008.04.001</identifier><identifier>CODEN: IJHMAK</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Applied sciences ; Boiling heat transfer ; Composite heat transfer model ; Devices using thermal energy ; Energy ; Energy. Thermal use of fuels ; Evaporator ; Exact sciences and technology ; Heat pipes ; Wicked heat pipe</subject><ispartof>International journal of heat and mass transfer, 2008-12, Vol.51 (25), p.6039-6046</ispartof><rights>2008 Elsevier Ltd</rights><rights>2009 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c403t-3676cfae887f0c9779f317385e4f49e82d625d92e059f8d888bf7be26d569b6d3</citedby><cites>FETCH-LOGICAL-c403t-3676cfae887f0c9779f317385e4f49e82d625d92e059f8d888bf7be26d569b6d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=20904247$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Kempers, R.</creatorcontrib><creatorcontrib>Robinson, A.J.</creatorcontrib><creatorcontrib>Ewing, D.</creatorcontrib><creatorcontrib>Ching, C.Y.</creatorcontrib><title>Characterization of evaporator and condenser thermal resistances of a screen mesh wicked heat pipe</title><title>International journal of heat and mass transfer</title><description>The heat transfer mechanisms in the condenser and evaporator sections of a copper-water wicked heat pipe with 3 layers of screen mesh were investigated experimentally. The individual condenser and evaporator thermal resistances were measured using thermocouples on the outer wall and within the core of the heat pipe. The heat transfer in the condenser section was found to be only by conduction. In the evaporator, however, either conduction or boiling heat transfer can occur. The transition between the two modes was found to be dependent on the vapor pressure and heat flux, and was reasonably well predicted by the bubble nucleation criterion outlined by Van Stralen and Cole [S. Van Stralen, R. Cole, Boiling Phenomena, vol. 1, McGraw-Hill Inc., 1979]. The experimental data for the boiling heat transfer in the evaporator was well correlated by [ St][ Pr] 0.6[ N p] 0.2 = 0.13[ Re] −1.43. A composite heat transfer model for the heat pipe is proposed that considers both conduction and boiling heat transfer in the evaporator.</description><subject>Applied sciences</subject><subject>Boiling heat transfer</subject><subject>Composite heat transfer model</subject><subject>Devices using thermal energy</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Evaporator</subject><subject>Exact sciences and technology</subject><subject>Heat pipes</subject><subject>Wicked heat pipe</subject><issn>0017-9310</issn><issn>1879-2189</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNqNkE1vFDEMhiNUJLaF_5ALiMtMk8xMPm6gVQtFlbjAOcomjjbLfBGnRfDryWgrLr1wsmw9em0_hLznrOWMy-tTm05HcGVyiCW7GSPkVjCmW9a3jPEXZMe1Mo3g2lyQXZ2oxnScvSKXiKetZb3ckcP-6LLzBXL640paZrpECo9uXbIrS6ZuDtQvc4AZIdNyhDy5kWbAhMXNHnDjHUWfAWY6AR7pr-R_QKDbcXRNK7wmL6MbEd481Svy_fbm2_5zc__1093-433je9aVppNK-uhAaxWZN0qZ2HHV6QH62BvQIkgxBCOADSbqoLU-RHUAIcMgzUGG7oq8O-euefn5AFjslNDDOLoZlge03SAHI0xXwQ9n0OcFMUO0a06Ty78tZ3aTa0_2uVy7ybWst9VdjXj7tMuhd2OsjE_4L0cww3rRq8p9OXNQH39MNQV9guotpAy-2LCk_1_6F2MNnjM</recordid><startdate>20081201</startdate><enddate>20081201</enddate><creator>Kempers, R.</creator><creator>Robinson, A.J.</creator><creator>Ewing, D.</creator><creator>Ching, C.Y.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20081201</creationdate><title>Characterization of evaporator and condenser thermal resistances of a screen mesh wicked heat pipe</title><author>Kempers, R. ; Robinson, A.J. ; Ewing, D. ; Ching, C.Y.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c403t-3676cfae887f0c9779f317385e4f49e82d625d92e059f8d888bf7be26d569b6d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Applied sciences</topic><topic>Boiling heat transfer</topic><topic>Composite heat transfer model</topic><topic>Devices using thermal energy</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Evaporator</topic><topic>Exact sciences and technology</topic><topic>Heat pipes</topic><topic>Wicked heat pipe</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kempers, R.</creatorcontrib><creatorcontrib>Robinson, A.J.</creatorcontrib><creatorcontrib>Ewing, D.</creatorcontrib><creatorcontrib>Ching, C.Y.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>International journal of heat and mass transfer</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kempers, R.</au><au>Robinson, A.J.</au><au>Ewing, D.</au><au>Ching, C.Y.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Characterization of evaporator and condenser thermal resistances of a screen mesh wicked heat pipe</atitle><jtitle>International journal of heat and mass transfer</jtitle><date>2008-12-01</date><risdate>2008</risdate><volume>51</volume><issue>25</issue><spage>6039</spage><epage>6046</epage><pages>6039-6046</pages><issn>0017-9310</issn><eissn>1879-2189</eissn><coden>IJHMAK</coden><abstract>The heat transfer mechanisms in the condenser and evaporator sections of a copper-water wicked heat pipe with 3 layers of screen mesh were investigated experimentally. The individual condenser and evaporator thermal resistances were measured using thermocouples on the outer wall and within the core of the heat pipe. The heat transfer in the condenser section was found to be only by conduction. In the evaporator, however, either conduction or boiling heat transfer can occur. The transition between the two modes was found to be dependent on the vapor pressure and heat flux, and was reasonably well predicted by the bubble nucleation criterion outlined by Van Stralen and Cole [S. Van Stralen, R. Cole, Boiling Phenomena, vol. 1, McGraw-Hill Inc., 1979]. The experimental data for the boiling heat transfer in the evaporator was well correlated by [ St][ Pr] 0.6[ N p] 0.2 = 0.13[ Re] −1.43. A composite heat transfer model for the heat pipe is proposed that considers both conduction and boiling heat transfer in the evaporator.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ijheatmasstransfer.2008.04.001</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0017-9310
ispartof International journal of heat and mass transfer, 2008-12, Vol.51 (25), p.6039-6046
issn 0017-9310
1879-2189
language eng
recordid cdi_proquest_miscellaneous_35659293
source ScienceDirect Freedom Collection
subjects Applied sciences
Boiling heat transfer
Composite heat transfer model
Devices using thermal energy
Energy
Energy. Thermal use of fuels
Evaporator
Exact sciences and technology
Heat pipes
Wicked heat pipe
title Characterization of evaporator and condenser thermal resistances of a screen mesh wicked heat pipe
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T05%3A07%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Characterization%20of%20evaporator%20and%20condenser%20thermal%20resistances%20of%20a%20screen%20mesh%20wicked%20heat%20pipe&rft.jtitle=International%20journal%20of%20heat%20and%20mass%20transfer&rft.au=Kempers,%20R.&rft.date=2008-12-01&rft.volume=51&rft.issue=25&rft.spage=6039&rft.epage=6046&rft.pages=6039-6046&rft.issn=0017-9310&rft.eissn=1879-2189&rft.coden=IJHMAK&rft_id=info:doi/10.1016/j.ijheatmasstransfer.2008.04.001&rft_dat=%3Cproquest_cross%3E35659293%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c403t-3676cfae887f0c9779f317385e4f49e82d625d92e059f8d888bf7be26d569b6d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=35659293&rft_id=info:pmid/&rfr_iscdi=true