Loading…
Characterization of evaporator and condenser thermal resistances of a screen mesh wicked heat pipe
The heat transfer mechanisms in the condenser and evaporator sections of a copper-water wicked heat pipe with 3 layers of screen mesh were investigated experimentally. The individual condenser and evaporator thermal resistances were measured using thermocouples on the outer wall and within the core...
Saved in:
Published in: | International journal of heat and mass transfer 2008-12, Vol.51 (25), p.6039-6046 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c403t-3676cfae887f0c9779f317385e4f49e82d625d92e059f8d888bf7be26d569b6d3 |
---|---|
cites | cdi_FETCH-LOGICAL-c403t-3676cfae887f0c9779f317385e4f49e82d625d92e059f8d888bf7be26d569b6d3 |
container_end_page | 6046 |
container_issue | 25 |
container_start_page | 6039 |
container_title | International journal of heat and mass transfer |
container_volume | 51 |
creator | Kempers, R. Robinson, A.J. Ewing, D. Ching, C.Y. |
description | The heat transfer mechanisms in the condenser and evaporator sections of a copper-water wicked heat pipe with 3 layers of screen mesh were investigated experimentally. The individual condenser and evaporator thermal resistances were measured using thermocouples on the outer wall and within the core of the heat pipe. The heat transfer in the condenser section was found to be only by conduction. In the evaporator, however, either conduction or boiling heat transfer can occur. The transition between the two modes was found to be dependent on the vapor pressure and heat flux, and was reasonably well predicted by the bubble nucleation criterion outlined by Van Stralen and Cole [S. Van Stralen, R. Cole, Boiling Phenomena, vol. 1, McGraw-Hill Inc., 1979]. The experimental data for the boiling heat transfer in the evaporator was well correlated by [
St][
Pr]
0.6[
N
p]
0.2
=
0.13[
Re]
−1.43. A composite heat transfer model for the heat pipe is proposed that considers both conduction and boiling heat transfer in the evaporator. |
doi_str_mv | 10.1016/j.ijheatmasstransfer.2008.04.001 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_35659293</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0017931008002068</els_id><sourcerecordid>35659293</sourcerecordid><originalsourceid>FETCH-LOGICAL-c403t-3676cfae887f0c9779f317385e4f49e82d625d92e059f8d888bf7be26d569b6d3</originalsourceid><addsrcrecordid>eNqNkE1vFDEMhiNUJLaF_5ALiMtMk8xMPm6gVQtFlbjAOcomjjbLfBGnRfDryWgrLr1wsmw9em0_hLznrOWMy-tTm05HcGVyiCW7GSPkVjCmW9a3jPEXZMe1Mo3g2lyQXZ2oxnScvSKXiKetZb3ckcP-6LLzBXL640paZrpECo9uXbIrS6ZuDtQvc4AZIdNyhDy5kWbAhMXNHnDjHUWfAWY6AR7pr-R_QKDbcXRNK7wmL6MbEd481Svy_fbm2_5zc__1093-433je9aVppNK-uhAaxWZN0qZ2HHV6QH62BvQIkgxBCOADSbqoLU-RHUAIcMgzUGG7oq8O-euefn5AFjslNDDOLoZlge03SAHI0xXwQ9n0OcFMUO0a06Ty78tZ3aTa0_2uVy7ybWst9VdjXj7tMuhd2OsjE_4L0cww3rRq8p9OXNQH39MNQV9guotpAy-2LCk_1_6F2MNnjM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>35659293</pqid></control><display><type>article</type><title>Characterization of evaporator and condenser thermal resistances of a screen mesh wicked heat pipe</title><source>ScienceDirect Freedom Collection</source><creator>Kempers, R. ; Robinson, A.J. ; Ewing, D. ; Ching, C.Y.</creator><creatorcontrib>Kempers, R. ; Robinson, A.J. ; Ewing, D. ; Ching, C.Y.</creatorcontrib><description>The heat transfer mechanisms in the condenser and evaporator sections of a copper-water wicked heat pipe with 3 layers of screen mesh were investigated experimentally. The individual condenser and evaporator thermal resistances were measured using thermocouples on the outer wall and within the core of the heat pipe. The heat transfer in the condenser section was found to be only by conduction. In the evaporator, however, either conduction or boiling heat transfer can occur. The transition between the two modes was found to be dependent on the vapor pressure and heat flux, and was reasonably well predicted by the bubble nucleation criterion outlined by Van Stralen and Cole [S. Van Stralen, R. Cole, Boiling Phenomena, vol. 1, McGraw-Hill Inc., 1979]. The experimental data for the boiling heat transfer in the evaporator was well correlated by [
St][
Pr]
0.6[
N
p]
0.2
=
0.13[
Re]
−1.43. A composite heat transfer model for the heat pipe is proposed that considers both conduction and boiling heat transfer in the evaporator.</description><identifier>ISSN: 0017-9310</identifier><identifier>EISSN: 1879-2189</identifier><identifier>DOI: 10.1016/j.ijheatmasstransfer.2008.04.001</identifier><identifier>CODEN: IJHMAK</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Applied sciences ; Boiling heat transfer ; Composite heat transfer model ; Devices using thermal energy ; Energy ; Energy. Thermal use of fuels ; Evaporator ; Exact sciences and technology ; Heat pipes ; Wicked heat pipe</subject><ispartof>International journal of heat and mass transfer, 2008-12, Vol.51 (25), p.6039-6046</ispartof><rights>2008 Elsevier Ltd</rights><rights>2009 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c403t-3676cfae887f0c9779f317385e4f49e82d625d92e059f8d888bf7be26d569b6d3</citedby><cites>FETCH-LOGICAL-c403t-3676cfae887f0c9779f317385e4f49e82d625d92e059f8d888bf7be26d569b6d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20904247$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Kempers, R.</creatorcontrib><creatorcontrib>Robinson, A.J.</creatorcontrib><creatorcontrib>Ewing, D.</creatorcontrib><creatorcontrib>Ching, C.Y.</creatorcontrib><title>Characterization of evaporator and condenser thermal resistances of a screen mesh wicked heat pipe</title><title>International journal of heat and mass transfer</title><description>The heat transfer mechanisms in the condenser and evaporator sections of a copper-water wicked heat pipe with 3 layers of screen mesh were investigated experimentally. The individual condenser and evaporator thermal resistances were measured using thermocouples on the outer wall and within the core of the heat pipe. The heat transfer in the condenser section was found to be only by conduction. In the evaporator, however, either conduction or boiling heat transfer can occur. The transition between the two modes was found to be dependent on the vapor pressure and heat flux, and was reasonably well predicted by the bubble nucleation criterion outlined by Van Stralen and Cole [S. Van Stralen, R. Cole, Boiling Phenomena, vol. 1, McGraw-Hill Inc., 1979]. The experimental data for the boiling heat transfer in the evaporator was well correlated by [
St][
Pr]
0.6[
N
p]
0.2
=
0.13[
Re]
−1.43. A composite heat transfer model for the heat pipe is proposed that considers both conduction and boiling heat transfer in the evaporator.</description><subject>Applied sciences</subject><subject>Boiling heat transfer</subject><subject>Composite heat transfer model</subject><subject>Devices using thermal energy</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Evaporator</subject><subject>Exact sciences and technology</subject><subject>Heat pipes</subject><subject>Wicked heat pipe</subject><issn>0017-9310</issn><issn>1879-2189</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNqNkE1vFDEMhiNUJLaF_5ALiMtMk8xMPm6gVQtFlbjAOcomjjbLfBGnRfDryWgrLr1wsmw9em0_hLznrOWMy-tTm05HcGVyiCW7GSPkVjCmW9a3jPEXZMe1Mo3g2lyQXZ2oxnScvSKXiKetZb3ckcP-6LLzBXL640paZrpECo9uXbIrS6ZuDtQvc4AZIdNyhDy5kWbAhMXNHnDjHUWfAWY6AR7pr-R_QKDbcXRNK7wmL6MbEd481Svy_fbm2_5zc__1093-433je9aVppNK-uhAaxWZN0qZ2HHV6QH62BvQIkgxBCOADSbqoLU-RHUAIcMgzUGG7oq8O-euefn5AFjslNDDOLoZlge03SAHI0xXwQ9n0OcFMUO0a06Ty78tZ3aTa0_2uVy7ybWst9VdjXj7tMuhd2OsjE_4L0cww3rRq8p9OXNQH39MNQV9guotpAy-2LCk_1_6F2MNnjM</recordid><startdate>20081201</startdate><enddate>20081201</enddate><creator>Kempers, R.</creator><creator>Robinson, A.J.</creator><creator>Ewing, D.</creator><creator>Ching, C.Y.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20081201</creationdate><title>Characterization of evaporator and condenser thermal resistances of a screen mesh wicked heat pipe</title><author>Kempers, R. ; Robinson, A.J. ; Ewing, D. ; Ching, C.Y.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c403t-3676cfae887f0c9779f317385e4f49e82d625d92e059f8d888bf7be26d569b6d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Applied sciences</topic><topic>Boiling heat transfer</topic><topic>Composite heat transfer model</topic><topic>Devices using thermal energy</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Evaporator</topic><topic>Exact sciences and technology</topic><topic>Heat pipes</topic><topic>Wicked heat pipe</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kempers, R.</creatorcontrib><creatorcontrib>Robinson, A.J.</creatorcontrib><creatorcontrib>Ewing, D.</creatorcontrib><creatorcontrib>Ching, C.Y.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>International journal of heat and mass transfer</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kempers, R.</au><au>Robinson, A.J.</au><au>Ewing, D.</au><au>Ching, C.Y.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Characterization of evaporator and condenser thermal resistances of a screen mesh wicked heat pipe</atitle><jtitle>International journal of heat and mass transfer</jtitle><date>2008-12-01</date><risdate>2008</risdate><volume>51</volume><issue>25</issue><spage>6039</spage><epage>6046</epage><pages>6039-6046</pages><issn>0017-9310</issn><eissn>1879-2189</eissn><coden>IJHMAK</coden><abstract>The heat transfer mechanisms in the condenser and evaporator sections of a copper-water wicked heat pipe with 3 layers of screen mesh were investigated experimentally. The individual condenser and evaporator thermal resistances were measured using thermocouples on the outer wall and within the core of the heat pipe. The heat transfer in the condenser section was found to be only by conduction. In the evaporator, however, either conduction or boiling heat transfer can occur. The transition between the two modes was found to be dependent on the vapor pressure and heat flux, and was reasonably well predicted by the bubble nucleation criterion outlined by Van Stralen and Cole [S. Van Stralen, R. Cole, Boiling Phenomena, vol. 1, McGraw-Hill Inc., 1979]. The experimental data for the boiling heat transfer in the evaporator was well correlated by [
St][
Pr]
0.6[
N
p]
0.2
=
0.13[
Re]
−1.43. A composite heat transfer model for the heat pipe is proposed that considers both conduction and boiling heat transfer in the evaporator.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ijheatmasstransfer.2008.04.001</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0017-9310 |
ispartof | International journal of heat and mass transfer, 2008-12, Vol.51 (25), p.6039-6046 |
issn | 0017-9310 1879-2189 |
language | eng |
recordid | cdi_proquest_miscellaneous_35659293 |
source | ScienceDirect Freedom Collection |
subjects | Applied sciences Boiling heat transfer Composite heat transfer model Devices using thermal energy Energy Energy. Thermal use of fuels Evaporator Exact sciences and technology Heat pipes Wicked heat pipe |
title | Characterization of evaporator and condenser thermal resistances of a screen mesh wicked heat pipe |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T05%3A07%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Characterization%20of%20evaporator%20and%20condenser%20thermal%20resistances%20of%20a%20screen%20mesh%20wicked%20heat%20pipe&rft.jtitle=International%20journal%20of%20heat%20and%20mass%20transfer&rft.au=Kempers,%20R.&rft.date=2008-12-01&rft.volume=51&rft.issue=25&rft.spage=6039&rft.epage=6046&rft.pages=6039-6046&rft.issn=0017-9310&rft.eissn=1879-2189&rft.coden=IJHMAK&rft_id=info:doi/10.1016/j.ijheatmasstransfer.2008.04.001&rft_dat=%3Cproquest_cross%3E35659293%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c403t-3676cfae887f0c9779f317385e4f49e82d625d92e059f8d888bf7be26d569b6d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=35659293&rft_id=info:pmid/&rfr_iscdi=true |