Loading…

Swelling Behaviour of Isotropic Poly(n-butyl acrylate) Networks in Isotropic and Anisotropic Solvents

The swelling properties of photochemically crosslinked poly(n-butyl acrylate) (PABu) networks in isotropic and anisotropic solvents were investigated experimentally. The purpose of this study was to examine the swelling kinetics of PABu networks in isotropic solvents and to compare the results obtai...

Full description

Saved in:
Bibliographic Details
Published in:Macromolecular symposia 2008-11, Vol.273 (1), p.66-72
Main Authors: Youcef, Boumédiène Dali, Bouchaour, Tewfik, Maschke, Ulrich
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The swelling properties of photochemically crosslinked poly(n-butyl acrylate) (PABu) networks in isotropic and anisotropic solvents were investigated experimentally. The purpose of this study was to examine the swelling kinetics of PABu networks in isotropic solvents and to compare the results obtained which those observed in the case of the low molecular weight liquid crystal 4-cyano-4'-n-pentyl-biphenyl known as 5CB. The phase diagrams were established in terms of composition and temperature for isotropic solvents, as toluene, acetone, cyclohexane, and methanol, and 5CB, using the plateau values corresponding to equilibrium states of swelling. The polymer networks were prepared via free radical polymerization/crosslinking processes by ultraviolet (UV) radiation of initial mixtures made up from a monomer, a crosslinker, and a photoinitiator. PABu networks with several crosslinking densities were formed using different quantities of difunctional monomer hexanedioldiacrylate (HDDA). Immersion of these networks in excess solvent allows measuring the solvent uptake by determination of the weight in isotropic solvents and diameter in an anisotropic solvent (5CB). Swelling data were rationalized by calculating weight and diameter ratios considering swollen to dry network states of the samples.
ISSN:1022-1360
1521-3900
DOI:10.1002/masy.200851309