Loading…

The effect of thermal ageing on low cycle fatigue behaviour of 316 stainless steel welds

It is well known that welds are the weak links in any structure. Therefore, it is of out most importance to characterize the mechanical properties of welds. Moreover, the changes in the microstructure that occur in welds on exposure to high temperatures affect the mechanical properties and must be s...

Full description

Saved in:
Bibliographic Details
Published in:International journal of fatigue 2009-03, Vol.31 (3), p.447-454
Main Authors: Goyal, Sunil, Sandhya, R., Valsan, M., Bhanu Sankara Rao, K.
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:It is well known that welds are the weak links in any structure. Therefore, it is of out most importance to characterize the mechanical properties of welds. Moreover, the changes in the microstructure that occur in welds on exposure to high temperatures affect the mechanical properties and must be studied by ageing the welds at high temperature. In this paper the low cycle fatigue behaviour of thermally aged 316 stainless steel weld metal is presented. Weld pads with single V configuration were prepared by the shielded metal arc welding process using 316 electrodes. Thermal ageing was done for 10,000 h at 823 and 873 K. Total strain controlled low cycle fatigue tests were conducted at a constant strain rate of 3 × 10 −3 s −1 with strain amplitudes in the range ±0.25% to ±0.6% at 823 and 873 K. Weld metal exhibited initial hardening followed by cyclic softening prior to failure. The aged samples exhibited higher stress response as compared to the unaged samples. At both the temperatures and all strain amplitudes fatigue life was inferior to that of unaged samples. The metallography of the aged and tested material was studied through optical, scanning and transmission electron microscopy. The effect of transformation of δ-ferrite to sigma phase and carbides in the weld metal on low cycle fatigue behaviour was evaluated.
ISSN:0142-1123
1879-3452
DOI:10.1016/j.ijfatigue.2008.07.006