Loading…

Thermal effects in packaging high power light emitting diode arrays

The package and system level temperature distributions of a high power (>1 W) light emitting diode (LED) array have been investigated using numerical heat flow models. For this analysis, a thermal resistor network model was combined with a 3D finite element submodel of an LED structure to predict...

Full description

Saved in:
Bibliographic Details
Published in:Applied thermal engineering 2009-02, Vol.29 (2), p.364-371
Main Authors: Christensen, Adam, Graham, Samuel
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c457t-e950433297ef10622ad64b2ed6761355663b8f64ce38641ef0d36d2ad192130a3
cites cdi_FETCH-LOGICAL-c457t-e950433297ef10622ad64b2ed6761355663b8f64ce38641ef0d36d2ad192130a3
container_end_page 371
container_issue 2
container_start_page 364
container_title Applied thermal engineering
container_volume 29
creator Christensen, Adam
Graham, Samuel
description The package and system level temperature distributions of a high power (>1 W) light emitting diode (LED) array have been investigated using numerical heat flow models. For this analysis, a thermal resistor network model was combined with a 3D finite element submodel of an LED structure to predict system and die level temperatures. The impact of LED array density, LED power density, and active versus passive cooling methods on device operation were calculated. In order to help understand the role of various thermal resistances in cooling such compact arrays, the thermal resistance network was analyzed in order to estimate the contributions from materials as well as active and passive cooling schemes. Finally, an analysis of a ceramic packaging architecture is performed in order to give insight into methods to reduce the packaging resistance for high power LEDs.
doi_str_mv 10.1016/j.applthermaleng.2008.03.019
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_35703717</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1359431108001208</els_id><sourcerecordid>35703717</sourcerecordid><originalsourceid>FETCH-LOGICAL-c457t-e950433297ef10622ad64b2ed6761355663b8f64ce38641ef0d36d2ad192130a3</originalsourceid><addsrcrecordid>eNqNkDtPwzAQgD2ARCn8Bw_AluBH4iQSC6ooIFViKbPl2ufUJS_sFNR_j6tUSGxMd9J99_oQuqEkpYSK-12qhqEZt-Bb1UBXp4yQMiU8JbQ6QzPK8yrJOKUX6DKEHSGUlUU2Q4v11IHBWtBjwK7Dg9IfqnZdjbeu3uKh_waPm5iOGFo3jseKcb0BrLxXh3CFzq1qAlyf4hy9L5_Wi5dk9fb8unhcJTrLizGBKicZ56wqwFIiGFNGZBsGRhQinpcLwTelFZkGXoqMgiWGCxMpWjHKieJzdDfNHXz_uYcwytYFDU2jOuj3QfK8ILygRQQfJlD7PgQPVg7etcofJCXyaEvu5F9b8mhLEi6jrdh-e9qjglaN9arTLvzOYKSiZclp5JYTB_HpLwdeBu2g02Ccjy6l6d3_Fv4AiJCKbA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>35703717</pqid></control><display><type>article</type><title>Thermal effects in packaging high power light emitting diode arrays</title><source>ScienceDirect Freedom Collection</source><creator>Christensen, Adam ; Graham, Samuel</creator><creatorcontrib>Christensen, Adam ; Graham, Samuel</creatorcontrib><description>The package and system level temperature distributions of a high power (&gt;1 W) light emitting diode (LED) array have been investigated using numerical heat flow models. For this analysis, a thermal resistor network model was combined with a 3D finite element submodel of an LED structure to predict system and die level temperatures. The impact of LED array density, LED power density, and active versus passive cooling methods on device operation were calculated. In order to help understand the role of various thermal resistances in cooling such compact arrays, the thermal resistance network was analyzed in order to estimate the contributions from materials as well as active and passive cooling schemes. Finally, an analysis of a ceramic packaging architecture is performed in order to give insight into methods to reduce the packaging resistance for high power LEDs.</description><identifier>ISSN: 1359-4311</identifier><identifier>DOI: 10.1016/j.applthermaleng.2008.03.019</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Applied sciences ; Array ; Energy ; Energy. Thermal use of fuels ; Exact sciences and technology ; Heat dissipation ; Heat transfer ; High power light emitting diodes ; Theoretical studies. Data and constants. Metering ; Thermal management</subject><ispartof>Applied thermal engineering, 2009-02, Vol.29 (2), p.364-371</ispartof><rights>2008</rights><rights>2009 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c457t-e950433297ef10622ad64b2ed6761355663b8f64ce38641ef0d36d2ad192130a3</citedby><cites>FETCH-LOGICAL-c457t-e950433297ef10622ad64b2ed6761355663b8f64ce38641ef0d36d2ad192130a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=20918831$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Christensen, Adam</creatorcontrib><creatorcontrib>Graham, Samuel</creatorcontrib><title>Thermal effects in packaging high power light emitting diode arrays</title><title>Applied thermal engineering</title><description>The package and system level temperature distributions of a high power (&gt;1 W) light emitting diode (LED) array have been investigated using numerical heat flow models. For this analysis, a thermal resistor network model was combined with a 3D finite element submodel of an LED structure to predict system and die level temperatures. The impact of LED array density, LED power density, and active versus passive cooling methods on device operation were calculated. In order to help understand the role of various thermal resistances in cooling such compact arrays, the thermal resistance network was analyzed in order to estimate the contributions from materials as well as active and passive cooling schemes. Finally, an analysis of a ceramic packaging architecture is performed in order to give insight into methods to reduce the packaging resistance for high power LEDs.</description><subject>Applied sciences</subject><subject>Array</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Exact sciences and technology</subject><subject>Heat dissipation</subject><subject>Heat transfer</subject><subject>High power light emitting diodes</subject><subject>Theoretical studies. Data and constants. Metering</subject><subject>Thermal management</subject><issn>1359-4311</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNqNkDtPwzAQgD2ARCn8Bw_AluBH4iQSC6ooIFViKbPl2ufUJS_sFNR_j6tUSGxMd9J99_oQuqEkpYSK-12qhqEZt-Bb1UBXp4yQMiU8JbQ6QzPK8yrJOKUX6DKEHSGUlUU2Q4v11IHBWtBjwK7Dg9IfqnZdjbeu3uKh_waPm5iOGFo3jseKcb0BrLxXh3CFzq1qAlyf4hy9L5_Wi5dk9fb8unhcJTrLizGBKicZ56wqwFIiGFNGZBsGRhQinpcLwTelFZkGXoqMgiWGCxMpWjHKieJzdDfNHXz_uYcwytYFDU2jOuj3QfK8ILygRQQfJlD7PgQPVg7etcofJCXyaEvu5F9b8mhLEi6jrdh-e9qjglaN9arTLvzOYKSiZclp5JYTB_HpLwdeBu2g02Ccjy6l6d3_Fv4AiJCKbA</recordid><startdate>20090201</startdate><enddate>20090201</enddate><creator>Christensen, Adam</creator><creator>Graham, Samuel</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20090201</creationdate><title>Thermal effects in packaging high power light emitting diode arrays</title><author>Christensen, Adam ; Graham, Samuel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c457t-e950433297ef10622ad64b2ed6761355663b8f64ce38641ef0d36d2ad192130a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Applied sciences</topic><topic>Array</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Exact sciences and technology</topic><topic>Heat dissipation</topic><topic>Heat transfer</topic><topic>High power light emitting diodes</topic><topic>Theoretical studies. Data and constants. Metering</topic><topic>Thermal management</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Christensen, Adam</creatorcontrib><creatorcontrib>Graham, Samuel</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Applied thermal engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Christensen, Adam</au><au>Graham, Samuel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermal effects in packaging high power light emitting diode arrays</atitle><jtitle>Applied thermal engineering</jtitle><date>2009-02-01</date><risdate>2009</risdate><volume>29</volume><issue>2</issue><spage>364</spage><epage>371</epage><pages>364-371</pages><issn>1359-4311</issn><abstract>The package and system level temperature distributions of a high power (&gt;1 W) light emitting diode (LED) array have been investigated using numerical heat flow models. For this analysis, a thermal resistor network model was combined with a 3D finite element submodel of an LED structure to predict system and die level temperatures. The impact of LED array density, LED power density, and active versus passive cooling methods on device operation were calculated. In order to help understand the role of various thermal resistances in cooling such compact arrays, the thermal resistance network was analyzed in order to estimate the contributions from materials as well as active and passive cooling schemes. Finally, an analysis of a ceramic packaging architecture is performed in order to give insight into methods to reduce the packaging resistance for high power LEDs.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.applthermaleng.2008.03.019</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1359-4311
ispartof Applied thermal engineering, 2009-02, Vol.29 (2), p.364-371
issn 1359-4311
language eng
recordid cdi_proquest_miscellaneous_35703717
source ScienceDirect Freedom Collection
subjects Applied sciences
Array
Energy
Energy. Thermal use of fuels
Exact sciences and technology
Heat dissipation
Heat transfer
High power light emitting diodes
Theoretical studies. Data and constants. Metering
Thermal management
title Thermal effects in packaging high power light emitting diode arrays
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T15%3A09%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermal%20effects%20in%20packaging%20high%20power%20light%20emitting%20diode%20arrays&rft.jtitle=Applied%20thermal%20engineering&rft.au=Christensen,%20Adam&rft.date=2009-02-01&rft.volume=29&rft.issue=2&rft.spage=364&rft.epage=371&rft.pages=364-371&rft.issn=1359-4311&rft_id=info:doi/10.1016/j.applthermaleng.2008.03.019&rft_dat=%3Cproquest_cross%3E35703717%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c457t-e950433297ef10622ad64b2ed6761355663b8f64ce38641ef0d36d2ad192130a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=35703717&rft_id=info:pmid/&rfr_iscdi=true