Loading…
Combining Trust-Region Techniques and Rosenbrock Methods to Compute Stationary Points
Rosenbrock methods are popular for solving a stiff initial-value problem of ordinary differential equations. One advantage is that there is no need to solve a nonlinear equation at every iteration, as compared with other implicit methods such as backward difference formulas or implicit Runge–Kutta m...
Saved in:
Published in: | Journal of optimization theory and applications 2009-02, Vol.140 (2), p.265-286 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c409t-cb3a01253d27a114da19e0731f5f4cd904ba87217db45d40c93443024b7873fb3 |
---|---|
cites | cdi_FETCH-LOGICAL-c409t-cb3a01253d27a114da19e0731f5f4cd904ba87217db45d40c93443024b7873fb3 |
container_end_page | 286 |
container_issue | 2 |
container_start_page | 265 |
container_title | Journal of optimization theory and applications |
container_volume | 140 |
creator | Luo, X.-L. Kelley, C. T. Liao, L.-Z. Tam, H. W. |
description | Rosenbrock methods are popular for solving a stiff initial-value problem of ordinary differential equations. One advantage is that there is no need to solve a nonlinear equation at every iteration, as compared with other implicit methods such as backward difference formulas or implicit Runge–Kutta methods. In this article, we introduce a trust-region technique to select the time steps of a second-order Rosenbrock method for a special initial-value problem, namely, a gradient system obtained from an unconstrained optimization problem. The technique is different from the local error approach. Both local and global convergence properties of the new method for solving an equilibrium point of the gradient system are addressed. Finally, some promising numerical results are also presented. |
doi_str_mv | 10.1007/s10957-008-9469-0 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_35810302</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>35810302</sourcerecordid><originalsourceid>FETCH-LOGICAL-c409t-cb3a01253d27a114da19e0731f5f4cd904ba87217db45d40c93443024b7873fb3</originalsourceid><addsrcrecordid>eNp9kcFuEzEQhi1UJELgAbhZSCAuhhnbG9vHKiq0UhGopGfL6_WmWxI72N4Db4-jVKhCoicf_H2_ZuYn5A3CRwRQnwqC6RQD0MzIlWHwjCywU4JxrfQZWQBwzgQX5gV5Wco9ABit5ILcrtO-n-IUt3ST51LZTdhOKdJN8Hdx-jWHQl0c6E0qIfY5-Z_0a6h3aSi0Jtrcw1wD_VFdbZLLv-n3NMVaXpHno9uV8PrhXZLbzxeb9SW7_vblan1-zbwEU5nvhQPknRi4cohycGgCKIFjN0o_GJC904qjGnrZDRK8EVIK4LJXWomxF0vy_pR7yOk4a7X7qfiw27kY0lys6DRCExr44UkQQXMOHLVp6Nt_0Ps059jWsGhWnVYgRIPwBPmcSslhtIc87dsBWpI9FmJPhdhWiD0WYqE57x6CXfFuN2YX_VT-ihyx46u2_ZLwE1faV9yG_GiA_4b_AQwFmWM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>196587033</pqid></control><display><type>article</type><title>Combining Trust-Region Techniques and Rosenbrock Methods to Compute Stationary Points</title><source>ABI/INFORM global</source><source>Springer Link</source><creator>Luo, X.-L. ; Kelley, C. T. ; Liao, L.-Z. ; Tam, H. W.</creator><creatorcontrib>Luo, X.-L. ; Kelley, C. T. ; Liao, L.-Z. ; Tam, H. W.</creatorcontrib><description>Rosenbrock methods are popular for solving a stiff initial-value problem of ordinary differential equations. One advantage is that there is no need to solve a nonlinear equation at every iteration, as compared with other implicit methods such as backward difference formulas or implicit Runge–Kutta methods. In this article, we introduce a trust-region technique to select the time steps of a second-order Rosenbrock method for a special initial-value problem, namely, a gradient system obtained from an unconstrained optimization problem. The technique is different from the local error approach. Both local and global convergence properties of the new method for solving an equilibrium point of the gradient system are addressed. Finally, some promising numerical results are also presented.</description><identifier>ISSN: 0022-3239</identifier><identifier>EISSN: 1573-2878</identifier><identifier>DOI: 10.1007/s10957-008-9469-0</identifier><identifier>CODEN: JOTABN</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Algorithms ; Applications of Mathematics ; Applied sciences ; Calculus of Variations and Optimal Control; Optimization ; Convergence ; Differential equations ; Engineering ; Equilibrium ; Exact sciences and technology ; Implicit methods ; Information industry ; Iterative methods ; Mathematical models ; Mathematical programming ; Mathematics ; Mathematics and Statistics ; Methods ; Nonlinear equations ; Operational research and scientific management ; Operational research. Management science ; Operations Research/Decision Theory ; Optimization ; Ordinary differential equations ; Runge-Kutta method ; Studies ; Theory of Computation</subject><ispartof>Journal of optimization theory and applications, 2009-02, Vol.140 (2), p.265-286</ispartof><rights>Springer Science+Business Media, LLC 2008</rights><rights>2009 INIST-CNRS</rights><rights>Springer Science+Business Media, LLC 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c409t-cb3a01253d27a114da19e0731f5f4cd904ba87217db45d40c93443024b7873fb3</citedby><cites>FETCH-LOGICAL-c409t-cb3a01253d27a114da19e0731f5f4cd904ba87217db45d40c93443024b7873fb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/196587033/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/196587033?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,11667,27901,27902,36037,36038,44339,74638</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21152607$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Luo, X.-L.</creatorcontrib><creatorcontrib>Kelley, C. T.</creatorcontrib><creatorcontrib>Liao, L.-Z.</creatorcontrib><creatorcontrib>Tam, H. W.</creatorcontrib><title>Combining Trust-Region Techniques and Rosenbrock Methods to Compute Stationary Points</title><title>Journal of optimization theory and applications</title><addtitle>J Optim Theory Appl</addtitle><description>Rosenbrock methods are popular for solving a stiff initial-value problem of ordinary differential equations. One advantage is that there is no need to solve a nonlinear equation at every iteration, as compared with other implicit methods such as backward difference formulas or implicit Runge–Kutta methods. In this article, we introduce a trust-region technique to select the time steps of a second-order Rosenbrock method for a special initial-value problem, namely, a gradient system obtained from an unconstrained optimization problem. The technique is different from the local error approach. Both local and global convergence properties of the new method for solving an equilibrium point of the gradient system are addressed. Finally, some promising numerical results are also presented.</description><subject>Algorithms</subject><subject>Applications of Mathematics</subject><subject>Applied sciences</subject><subject>Calculus of Variations and Optimal Control; Optimization</subject><subject>Convergence</subject><subject>Differential equations</subject><subject>Engineering</subject><subject>Equilibrium</subject><subject>Exact sciences and technology</subject><subject>Implicit methods</subject><subject>Information industry</subject><subject>Iterative methods</subject><subject>Mathematical models</subject><subject>Mathematical programming</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Methods</subject><subject>Nonlinear equations</subject><subject>Operational research and scientific management</subject><subject>Operational research. Management science</subject><subject>Operations Research/Decision Theory</subject><subject>Optimization</subject><subject>Ordinary differential equations</subject><subject>Runge-Kutta method</subject><subject>Studies</subject><subject>Theory of Computation</subject><issn>0022-3239</issn><issn>1573-2878</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNp9kcFuEzEQhi1UJELgAbhZSCAuhhnbG9vHKiq0UhGopGfL6_WmWxI72N4Db4-jVKhCoicf_H2_ZuYn5A3CRwRQnwqC6RQD0MzIlWHwjCywU4JxrfQZWQBwzgQX5gV5Wco9ABit5ILcrtO-n-IUt3ST51LZTdhOKdJN8Hdx-jWHQl0c6E0qIfY5-Z_0a6h3aSi0Jtrcw1wD_VFdbZLLv-n3NMVaXpHno9uV8PrhXZLbzxeb9SW7_vblan1-zbwEU5nvhQPknRi4cohycGgCKIFjN0o_GJC904qjGnrZDRK8EVIK4LJXWomxF0vy_pR7yOk4a7X7qfiw27kY0lys6DRCExr44UkQQXMOHLVp6Nt_0Ps059jWsGhWnVYgRIPwBPmcSslhtIc87dsBWpI9FmJPhdhWiD0WYqE57x6CXfFuN2YX_VT-ihyx46u2_ZLwE1faV9yG_GiA_4b_AQwFmWM</recordid><startdate>20090201</startdate><enddate>20090201</enddate><creator>Luo, X.-L.</creator><creator>Kelley, C. T.</creator><creator>Liao, L.-Z.</creator><creator>Tam, H. W.</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>0U~</scope><scope>1-H</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KR7</scope><scope>L.-</scope><scope>L.0</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20090201</creationdate><title>Combining Trust-Region Techniques and Rosenbrock Methods to Compute Stationary Points</title><author>Luo, X.-L. ; Kelley, C. T. ; Liao, L.-Z. ; Tam, H. W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c409t-cb3a01253d27a114da19e0731f5f4cd904ba87217db45d40c93443024b7873fb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Algorithms</topic><topic>Applications of Mathematics</topic><topic>Applied sciences</topic><topic>Calculus of Variations and Optimal Control; Optimization</topic><topic>Convergence</topic><topic>Differential equations</topic><topic>Engineering</topic><topic>Equilibrium</topic><topic>Exact sciences and technology</topic><topic>Implicit methods</topic><topic>Information industry</topic><topic>Iterative methods</topic><topic>Mathematical models</topic><topic>Mathematical programming</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Methods</topic><topic>Nonlinear equations</topic><topic>Operational research and scientific management</topic><topic>Operational research. Management science</topic><topic>Operations Research/Decision Theory</topic><topic>Optimization</topic><topic>Ordinary differential equations</topic><topic>Runge-Kutta method</topic><topic>Studies</topic><topic>Theory of Computation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Luo, X.-L.</creatorcontrib><creatorcontrib>Kelley, C. T.</creatorcontrib><creatorcontrib>Liao, L.-Z.</creatorcontrib><creatorcontrib>Tam, H. W.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Global News & ABI/Inform Professional</collection><collection>Trade PRO</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Professional Standard</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM global</collection><collection>ProQuest Research Library</collection><collection>ProQuest Science Journals</collection><collection>ProQuest Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of optimization theory and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Luo, X.-L.</au><au>Kelley, C. T.</au><au>Liao, L.-Z.</au><au>Tam, H. W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Combining Trust-Region Techniques and Rosenbrock Methods to Compute Stationary Points</atitle><jtitle>Journal of optimization theory and applications</jtitle><stitle>J Optim Theory Appl</stitle><date>2009-02-01</date><risdate>2009</risdate><volume>140</volume><issue>2</issue><spage>265</spage><epage>286</epage><pages>265-286</pages><issn>0022-3239</issn><eissn>1573-2878</eissn><coden>JOTABN</coden><abstract>Rosenbrock methods are popular for solving a stiff initial-value problem of ordinary differential equations. One advantage is that there is no need to solve a nonlinear equation at every iteration, as compared with other implicit methods such as backward difference formulas or implicit Runge–Kutta methods. In this article, we introduce a trust-region technique to select the time steps of a second-order Rosenbrock method for a special initial-value problem, namely, a gradient system obtained from an unconstrained optimization problem. The technique is different from the local error approach. Both local and global convergence properties of the new method for solving an equilibrium point of the gradient system are addressed. Finally, some promising numerical results are also presented.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s10957-008-9469-0</doi><tpages>22</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-3239 |
ispartof | Journal of optimization theory and applications, 2009-02, Vol.140 (2), p.265-286 |
issn | 0022-3239 1573-2878 |
language | eng |
recordid | cdi_proquest_miscellaneous_35810302 |
source | ABI/INFORM global; Springer Link |
subjects | Algorithms Applications of Mathematics Applied sciences Calculus of Variations and Optimal Control Optimization Convergence Differential equations Engineering Equilibrium Exact sciences and technology Implicit methods Information industry Iterative methods Mathematical models Mathematical programming Mathematics Mathematics and Statistics Methods Nonlinear equations Operational research and scientific management Operational research. Management science Operations Research/Decision Theory Optimization Ordinary differential equations Runge-Kutta method Studies Theory of Computation |
title | Combining Trust-Region Techniques and Rosenbrock Methods to Compute Stationary Points |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T15%3A07%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Combining%20Trust-Region%20Techniques%20and%20Rosenbrock%20Methods%20to%20Compute%20Stationary%20Points&rft.jtitle=Journal%20of%20optimization%20theory%20and%20applications&rft.au=Luo,%20X.-L.&rft.date=2009-02-01&rft.volume=140&rft.issue=2&rft.spage=265&rft.epage=286&rft.pages=265-286&rft.issn=0022-3239&rft.eissn=1573-2878&rft.coden=JOTABN&rft_id=info:doi/10.1007/s10957-008-9469-0&rft_dat=%3Cproquest_cross%3E35810302%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c409t-cb3a01253d27a114da19e0731f5f4cd904ba87217db45d40c93443024b7873fb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=196587033&rft_id=info:pmid/&rfr_iscdi=true |