Loading…
Jet-Induced Cratering of a Granular Surface with Application to Lunar Spaceports
The erosion of lunar soil by rocket exhaust plumes is investigated experimentally. This has identified the diffusion-driven flow in the bulk of the sand as an important but previously unrecognized mechanism for erosion dynamics. It has also shown that slow regime cratering is governed by the recircu...
Saved in:
Published in: | Journal of aerospace engineering 2009-01, Vol.22 (1), p.24-32 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The erosion of lunar soil by rocket exhaust plumes is investigated experimentally. This has identified the diffusion-driven flow in the bulk of the sand as an important but previously unrecognized mechanism for erosion dynamics. It has also shown that slow regime cratering is governed by the recirculation of sand in the widening geometry of the crater. Scaling relationships and erosion mechanisms have been characterized in detail for the slow regime. The diffusion-driven flow occurs in both slow and fast regime cratering. Because diffusion-driven flow had been omitted from the lunar erosion theory and from the pressure cratering theory of the Apollo and Viking era, those theories cannot be entirely correct. |
---|---|
ISSN: | 0893-1321 1943-5525 |
DOI: | 10.1061/(ASCE)0893-1321(2009)22:1(24) |