Loading…
Electrospun nanofiber reinforced and toughened composites through in situ nano-interface formation
PAN core–PMMA shell nanofiber fabric was prepared by electrospinning of polymer blends to reinforce 2,2-bis-[4-(methacryloxypropoxy)-phenyl]-propane (Bis-GMA) a dental resin system. The core–shell structure of the PAN–PMMA nanofiber was confirmed by scanning electron microscopy (SEM) and transmissio...
Saved in:
Published in: | Composites science and technology 2008-12, Vol.68 (15), p.3322-3329 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | PAN core–PMMA shell nanofiber fabric was prepared by electrospinning of polymer blends to reinforce 2,2-bis-[4-(methacryloxypropoxy)-phenyl]-propane (Bis-GMA) a dental resin system. The core–shell structure of the PAN–PMMA nanofiber was confirmed by scanning electron microscopy (SEM) and transmission electron microscope/energy dispersive spectroscopy (TEM/EDS) observation. The flexural properties and dynamic mechanical properties of the PAN–PMMA nanofiber reinforced Bis-GMA composites were studied. Results showed that PMMA shell was partly dissolved with the Bis-GMA resin. After photopolymerization, liner PMMA chains interpenetrated and entangled with the dental resin network, which resulted in an in situ nano-interface in the shell structure. Improvement of the mechanical properties of the PAN–PMMA nanofiber reinforced Bis-GMA composites has been achieved through this nano-interface formation. |
---|---|
ISSN: | 0266-3538 1879-1050 |
DOI: | 10.1016/j.compscitech.2008.08.033 |