Loading…
Modified extragradient methods for solving variational inequalities
In this paper, we propose two methods for solving variational inequalities. In the first method, we modified the extragradient method by using a new step size while the second method can be viewed as an extension of the first one by performing an additional projection step at each iteration and anot...
Saved in:
Published in: | Computers & mathematics with applications (1987) 2009, Vol.57 (2), p.230-239 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c412t-896a4e197ca78e3f3cd8be825e955af569a1f645b727a56cc1554a5e44dc42303 |
---|---|
cites | cdi_FETCH-LOGICAL-c412t-896a4e197ca78e3f3cd8be825e955af569a1f645b727a56cc1554a5e44dc42303 |
container_end_page | 239 |
container_issue | 2 |
container_start_page | 230 |
container_title | Computers & mathematics with applications (1987) |
container_volume | 57 |
creator | Bnouhachem, Abdellah Xu, M.H. Fu, Xiao-Ling Zhaohan, Sheng |
description | In this paper, we propose two methods for solving variational inequalities. In the first method, we modified the extragradient method by using a new step size while the second method can be viewed as an extension of the first one by performing an additional projection step at each iteration and another optimal step length is employed to reach substantial progress in each iteration. Under certain conditions, the global convergence of two methods is proved. Preliminary numerical experiments are included to illustrate the efficiency of the proposed methods. |
doi_str_mv | 10.1016/j.camwa.2008.10.065 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_36007469</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0898122108006159</els_id><sourcerecordid>36007469</sourcerecordid><originalsourceid>FETCH-LOGICAL-c412t-896a4e197ca78e3f3cd8be825e955af569a1f645b727a56cc1554a5e44dc42303</originalsourceid><addsrcrecordid>eNp9kD1PwzAURS0EEqXwC1gyIZYE27EdZ2BAFV9SEQvM1qvzUlwlcWunBf49LmVmetLVuVd6h5BLRgtGmbpZFRb6Tyg4pTolBVXyiEyYrsq8UkofkwnVtc4Z5-yUnMW4opSKktMJmb34xrUOmwy_xgDLAI3DYcx6HD98E7PWhyz6bueGZbaD4GB0foAucwNuttC50WE8JyctdBEv_u6UvD_cv82e8vnr4_Psbp5bwfiY61qBQFZXFiqNZVvaRi9Qc4m1lNBKVQNrlZCLilcglbVMSgEShWis4CUtp-TqsLsOfrPFOJreRYtdBwP6bTSlorQSqk7g9b8go5pzmharhJYH1AYfY8DWrIPrIXwnyOzdmpX5dWv2bvdhcptat4cWpnd3DoOJNmmz2LiAdjSNd__2fwA18oOo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1082203037</pqid></control><display><type>article</type><title>Modified extragradient methods for solving variational inequalities</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Bnouhachem, Abdellah ; Xu, M.H. ; Fu, Xiao-Ling ; Zhaohan, Sheng</creator><creatorcontrib>Bnouhachem, Abdellah ; Xu, M.H. ; Fu, Xiao-Ling ; Zhaohan, Sheng</creatorcontrib><description>In this paper, we propose two methods for solving variational inequalities. In the first method, we modified the extragradient method by using a new step size while the second method can be viewed as an extension of the first one by performing an additional projection step at each iteration and another optimal step length is employed to reach substantial progress in each iteration. Under certain conditions, the global convergence of two methods is proved. Preliminary numerical experiments are included to illustrate the efficiency of the proposed methods.</description><identifier>ISSN: 0898-1221</identifier><identifier>EISSN: 1873-7668</identifier><identifier>DOI: 10.1016/j.camwa.2008.10.065</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Computer simulation ; Convergence ; Extragradient methods ; Inequalities ; Iterative methods ; Mathematical models ; Monotone operators ; Optimization ; Prediction-correction methods ; Projection ; Projection methods ; Self-adaptive rules ; Variational inequalities</subject><ispartof>Computers & mathematics with applications (1987), 2009, Vol.57 (2), p.230-239</ispartof><rights>2008 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c412t-896a4e197ca78e3f3cd8be825e955af569a1f645b727a56cc1554a5e44dc42303</citedby><cites>FETCH-LOGICAL-c412t-896a4e197ca78e3f3cd8be825e955af569a1f645b727a56cc1554a5e44dc42303</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4023,27922,27923,27924</link.rule.ids></links><search><creatorcontrib>Bnouhachem, Abdellah</creatorcontrib><creatorcontrib>Xu, M.H.</creatorcontrib><creatorcontrib>Fu, Xiao-Ling</creatorcontrib><creatorcontrib>Zhaohan, Sheng</creatorcontrib><title>Modified extragradient methods for solving variational inequalities</title><title>Computers & mathematics with applications (1987)</title><description>In this paper, we propose two methods for solving variational inequalities. In the first method, we modified the extragradient method by using a new step size while the second method can be viewed as an extension of the first one by performing an additional projection step at each iteration and another optimal step length is employed to reach substantial progress in each iteration. Under certain conditions, the global convergence of two methods is proved. Preliminary numerical experiments are included to illustrate the efficiency of the proposed methods.</description><subject>Computer simulation</subject><subject>Convergence</subject><subject>Extragradient methods</subject><subject>Inequalities</subject><subject>Iterative methods</subject><subject>Mathematical models</subject><subject>Monotone operators</subject><subject>Optimization</subject><subject>Prediction-correction methods</subject><subject>Projection</subject><subject>Projection methods</subject><subject>Self-adaptive rules</subject><subject>Variational inequalities</subject><issn>0898-1221</issn><issn>1873-7668</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAURS0EEqXwC1gyIZYE27EdZ2BAFV9SEQvM1qvzUlwlcWunBf49LmVmetLVuVd6h5BLRgtGmbpZFRb6Tyg4pTolBVXyiEyYrsq8UkofkwnVtc4Z5-yUnMW4opSKktMJmb34xrUOmwy_xgDLAI3DYcx6HD98E7PWhyz6bueGZbaD4GB0foAucwNuttC50WE8JyctdBEv_u6UvD_cv82e8vnr4_Psbp5bwfiY61qBQFZXFiqNZVvaRi9Qc4m1lNBKVQNrlZCLilcglbVMSgEShWis4CUtp-TqsLsOfrPFOJreRYtdBwP6bTSlorQSqk7g9b8go5pzmharhJYH1AYfY8DWrIPrIXwnyOzdmpX5dWv2bvdhcptat4cWpnd3DoOJNmmz2LiAdjSNd__2fwA18oOo</recordid><startdate>2009</startdate><enddate>2009</enddate><creator>Bnouhachem, Abdellah</creator><creator>Xu, M.H.</creator><creator>Fu, Xiao-Ling</creator><creator>Zhaohan, Sheng</creator><general>Elsevier Ltd</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>2009</creationdate><title>Modified extragradient methods for solving variational inequalities</title><author>Bnouhachem, Abdellah ; Xu, M.H. ; Fu, Xiao-Ling ; Zhaohan, Sheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c412t-896a4e197ca78e3f3cd8be825e955af569a1f645b727a56cc1554a5e44dc42303</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Computer simulation</topic><topic>Convergence</topic><topic>Extragradient methods</topic><topic>Inequalities</topic><topic>Iterative methods</topic><topic>Mathematical models</topic><topic>Monotone operators</topic><topic>Optimization</topic><topic>Prediction-correction methods</topic><topic>Projection</topic><topic>Projection methods</topic><topic>Self-adaptive rules</topic><topic>Variational inequalities</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bnouhachem, Abdellah</creatorcontrib><creatorcontrib>Xu, M.H.</creatorcontrib><creatorcontrib>Fu, Xiao-Ling</creatorcontrib><creatorcontrib>Zhaohan, Sheng</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computers & mathematics with applications (1987)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bnouhachem, Abdellah</au><au>Xu, M.H.</au><au>Fu, Xiao-Ling</au><au>Zhaohan, Sheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modified extragradient methods for solving variational inequalities</atitle><jtitle>Computers & mathematics with applications (1987)</jtitle><date>2009</date><risdate>2009</risdate><volume>57</volume><issue>2</issue><spage>230</spage><epage>239</epage><pages>230-239</pages><issn>0898-1221</issn><eissn>1873-7668</eissn><abstract>In this paper, we propose two methods for solving variational inequalities. In the first method, we modified the extragradient method by using a new step size while the second method can be viewed as an extension of the first one by performing an additional projection step at each iteration and another optimal step length is employed to reach substantial progress in each iteration. Under certain conditions, the global convergence of two methods is proved. Preliminary numerical experiments are included to illustrate the efficiency of the proposed methods.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.camwa.2008.10.065</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0898-1221 |
ispartof | Computers & mathematics with applications (1987), 2009, Vol.57 (2), p.230-239 |
issn | 0898-1221 1873-7668 |
language | eng |
recordid | cdi_proquest_miscellaneous_36007469 |
source | ScienceDirect Freedom Collection 2022-2024 |
subjects | Computer simulation Convergence Extragradient methods Inequalities Iterative methods Mathematical models Monotone operators Optimization Prediction-correction methods Projection Projection methods Self-adaptive rules Variational inequalities |
title | Modified extragradient methods for solving variational inequalities |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T08%3A12%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modified%20extragradient%20methods%20for%20solving%20variational%20inequalities&rft.jtitle=Computers%20&%20mathematics%20with%20applications%20(1987)&rft.au=Bnouhachem,%20Abdellah&rft.date=2009&rft.volume=57&rft.issue=2&rft.spage=230&rft.epage=239&rft.pages=230-239&rft.issn=0898-1221&rft.eissn=1873-7668&rft_id=info:doi/10.1016/j.camwa.2008.10.065&rft_dat=%3Cproquest_cross%3E36007469%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c412t-896a4e197ca78e3f3cd8be825e955af569a1f645b727a56cc1554a5e44dc42303%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1082203037&rft_id=info:pmid/&rfr_iscdi=true |