Loading…

Modified extragradient methods for solving variational inequalities

In this paper, we propose two methods for solving variational inequalities. In the first method, we modified the extragradient method by using a new step size while the second method can be viewed as an extension of the first one by performing an additional projection step at each iteration and anot...

Full description

Saved in:
Bibliographic Details
Published in:Computers & mathematics with applications (1987) 2009, Vol.57 (2), p.230-239
Main Authors: Bnouhachem, Abdellah, Xu, M.H., Fu, Xiao-Ling, Zhaohan, Sheng
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c412t-896a4e197ca78e3f3cd8be825e955af569a1f645b727a56cc1554a5e44dc42303
cites cdi_FETCH-LOGICAL-c412t-896a4e197ca78e3f3cd8be825e955af569a1f645b727a56cc1554a5e44dc42303
container_end_page 239
container_issue 2
container_start_page 230
container_title Computers & mathematics with applications (1987)
container_volume 57
creator Bnouhachem, Abdellah
Xu, M.H.
Fu, Xiao-Ling
Zhaohan, Sheng
description In this paper, we propose two methods for solving variational inequalities. In the first method, we modified the extragradient method by using a new step size while the second method can be viewed as an extension of the first one by performing an additional projection step at each iteration and another optimal step length is employed to reach substantial progress in each iteration. Under certain conditions, the global convergence of two methods is proved. Preliminary numerical experiments are included to illustrate the efficiency of the proposed methods.
doi_str_mv 10.1016/j.camwa.2008.10.065
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_36007469</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0898122108006159</els_id><sourcerecordid>36007469</sourcerecordid><originalsourceid>FETCH-LOGICAL-c412t-896a4e197ca78e3f3cd8be825e955af569a1f645b727a56cc1554a5e44dc42303</originalsourceid><addsrcrecordid>eNp9kD1PwzAURS0EEqXwC1gyIZYE27EdZ2BAFV9SEQvM1qvzUlwlcWunBf49LmVmetLVuVd6h5BLRgtGmbpZFRb6Tyg4pTolBVXyiEyYrsq8UkofkwnVtc4Z5-yUnMW4opSKktMJmb34xrUOmwy_xgDLAI3DYcx6HD98E7PWhyz6bueGZbaD4GB0foAucwNuttC50WE8JyctdBEv_u6UvD_cv82e8vnr4_Psbp5bwfiY61qBQFZXFiqNZVvaRi9Qc4m1lNBKVQNrlZCLilcglbVMSgEShWis4CUtp-TqsLsOfrPFOJreRYtdBwP6bTSlorQSqk7g9b8go5pzmharhJYH1AYfY8DWrIPrIXwnyOzdmpX5dWv2bvdhcptat4cWpnd3DoOJNmmz2LiAdjSNd__2fwA18oOo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1082203037</pqid></control><display><type>article</type><title>Modified extragradient methods for solving variational inequalities</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Bnouhachem, Abdellah ; Xu, M.H. ; Fu, Xiao-Ling ; Zhaohan, Sheng</creator><creatorcontrib>Bnouhachem, Abdellah ; Xu, M.H. ; Fu, Xiao-Ling ; Zhaohan, Sheng</creatorcontrib><description>In this paper, we propose two methods for solving variational inequalities. In the first method, we modified the extragradient method by using a new step size while the second method can be viewed as an extension of the first one by performing an additional projection step at each iteration and another optimal step length is employed to reach substantial progress in each iteration. Under certain conditions, the global convergence of two methods is proved. Preliminary numerical experiments are included to illustrate the efficiency of the proposed methods.</description><identifier>ISSN: 0898-1221</identifier><identifier>EISSN: 1873-7668</identifier><identifier>DOI: 10.1016/j.camwa.2008.10.065</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Computer simulation ; Convergence ; Extragradient methods ; Inequalities ; Iterative methods ; Mathematical models ; Monotone operators ; Optimization ; Prediction-correction methods ; Projection ; Projection methods ; Self-adaptive rules ; Variational inequalities</subject><ispartof>Computers &amp; mathematics with applications (1987), 2009, Vol.57 (2), p.230-239</ispartof><rights>2008 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c412t-896a4e197ca78e3f3cd8be825e955af569a1f645b727a56cc1554a5e44dc42303</citedby><cites>FETCH-LOGICAL-c412t-896a4e197ca78e3f3cd8be825e955af569a1f645b727a56cc1554a5e44dc42303</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4023,27922,27923,27924</link.rule.ids></links><search><creatorcontrib>Bnouhachem, Abdellah</creatorcontrib><creatorcontrib>Xu, M.H.</creatorcontrib><creatorcontrib>Fu, Xiao-Ling</creatorcontrib><creatorcontrib>Zhaohan, Sheng</creatorcontrib><title>Modified extragradient methods for solving variational inequalities</title><title>Computers &amp; mathematics with applications (1987)</title><description>In this paper, we propose two methods for solving variational inequalities. In the first method, we modified the extragradient method by using a new step size while the second method can be viewed as an extension of the first one by performing an additional projection step at each iteration and another optimal step length is employed to reach substantial progress in each iteration. Under certain conditions, the global convergence of two methods is proved. Preliminary numerical experiments are included to illustrate the efficiency of the proposed methods.</description><subject>Computer simulation</subject><subject>Convergence</subject><subject>Extragradient methods</subject><subject>Inequalities</subject><subject>Iterative methods</subject><subject>Mathematical models</subject><subject>Monotone operators</subject><subject>Optimization</subject><subject>Prediction-correction methods</subject><subject>Projection</subject><subject>Projection methods</subject><subject>Self-adaptive rules</subject><subject>Variational inequalities</subject><issn>0898-1221</issn><issn>1873-7668</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAURS0EEqXwC1gyIZYE27EdZ2BAFV9SEQvM1qvzUlwlcWunBf49LmVmetLVuVd6h5BLRgtGmbpZFRb6Tyg4pTolBVXyiEyYrsq8UkofkwnVtc4Z5-yUnMW4opSKktMJmb34xrUOmwy_xgDLAI3DYcx6HD98E7PWhyz6bueGZbaD4GB0foAucwNuttC50WE8JyctdBEv_u6UvD_cv82e8vnr4_Psbp5bwfiY61qBQFZXFiqNZVvaRi9Qc4m1lNBKVQNrlZCLilcglbVMSgEShWis4CUtp-TqsLsOfrPFOJreRYtdBwP6bTSlorQSqk7g9b8go5pzmharhJYH1AYfY8DWrIPrIXwnyOzdmpX5dWv2bvdhcptat4cWpnd3DoOJNmmz2LiAdjSNd__2fwA18oOo</recordid><startdate>2009</startdate><enddate>2009</enddate><creator>Bnouhachem, Abdellah</creator><creator>Xu, M.H.</creator><creator>Fu, Xiao-Ling</creator><creator>Zhaohan, Sheng</creator><general>Elsevier Ltd</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>2009</creationdate><title>Modified extragradient methods for solving variational inequalities</title><author>Bnouhachem, Abdellah ; Xu, M.H. ; Fu, Xiao-Ling ; Zhaohan, Sheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c412t-896a4e197ca78e3f3cd8be825e955af569a1f645b727a56cc1554a5e44dc42303</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Computer simulation</topic><topic>Convergence</topic><topic>Extragradient methods</topic><topic>Inequalities</topic><topic>Iterative methods</topic><topic>Mathematical models</topic><topic>Monotone operators</topic><topic>Optimization</topic><topic>Prediction-correction methods</topic><topic>Projection</topic><topic>Projection methods</topic><topic>Self-adaptive rules</topic><topic>Variational inequalities</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bnouhachem, Abdellah</creatorcontrib><creatorcontrib>Xu, M.H.</creatorcontrib><creatorcontrib>Fu, Xiao-Ling</creatorcontrib><creatorcontrib>Zhaohan, Sheng</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computers &amp; mathematics with applications (1987)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bnouhachem, Abdellah</au><au>Xu, M.H.</au><au>Fu, Xiao-Ling</au><au>Zhaohan, Sheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modified extragradient methods for solving variational inequalities</atitle><jtitle>Computers &amp; mathematics with applications (1987)</jtitle><date>2009</date><risdate>2009</risdate><volume>57</volume><issue>2</issue><spage>230</spage><epage>239</epage><pages>230-239</pages><issn>0898-1221</issn><eissn>1873-7668</eissn><abstract>In this paper, we propose two methods for solving variational inequalities. In the first method, we modified the extragradient method by using a new step size while the second method can be viewed as an extension of the first one by performing an additional projection step at each iteration and another optimal step length is employed to reach substantial progress in each iteration. Under certain conditions, the global convergence of two methods is proved. Preliminary numerical experiments are included to illustrate the efficiency of the proposed methods.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.camwa.2008.10.065</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0898-1221
ispartof Computers & mathematics with applications (1987), 2009, Vol.57 (2), p.230-239
issn 0898-1221
1873-7668
language eng
recordid cdi_proquest_miscellaneous_36007469
source ScienceDirect Freedom Collection 2022-2024
subjects Computer simulation
Convergence
Extragradient methods
Inequalities
Iterative methods
Mathematical models
Monotone operators
Optimization
Prediction-correction methods
Projection
Projection methods
Self-adaptive rules
Variational inequalities
title Modified extragradient methods for solving variational inequalities
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T08%3A12%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modified%20extragradient%20methods%20for%20solving%20variational%20inequalities&rft.jtitle=Computers%20&%20mathematics%20with%20applications%20(1987)&rft.au=Bnouhachem,%20Abdellah&rft.date=2009&rft.volume=57&rft.issue=2&rft.spage=230&rft.epage=239&rft.pages=230-239&rft.issn=0898-1221&rft.eissn=1873-7668&rft_id=info:doi/10.1016/j.camwa.2008.10.065&rft_dat=%3Cproquest_cross%3E36007469%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c412t-896a4e197ca78e3f3cd8be825e955af569a1f645b727a56cc1554a5e44dc42303%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1082203037&rft_id=info:pmid/&rfr_iscdi=true