Loading…
Side chain dendritic polyurethanes with shape-memory effect
In this study, thermally reversible polyurethanes (PUs) with shape memory effect were developed by using hydrogen bonding to enhance physical interactions. Two different types of PUs were synthesized: (1) a linear PU whose hard segment consists of methylene di-para-phenyl isocyanate (MDI) and di(eth...
Saved in:
Published in: | Journal of materials chemistry 2009-01, Vol.19 (44), p.8484-8494 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this study, thermally reversible polyurethanes (PUs) with shape memory effect were developed by using hydrogen bonding to enhance physical interactions. Two different types of PUs were synthesized: (1) a linear PU whose hard segment consists of methylene di-para-phenyl isocyanate (MDI) and di(ethylene glycol) (DEG); its soft segment is made of Tone 0260 polyol, a polyester polyol; (2) a side-chain dendritic PU which replaces DEG with different generations of dendritic chain extenders. By incorporation of the dendritic structure with peripheral long alkyl chains (strong van der Waals forces), the miscibility between hard and soft segments can be significantly improved. Consequently, the hydrogen bonding reinforced hard segments (malonamide linkages) of side chain dendritic PUs result in greatly enhanced mechanical properties and shape memory effect. During cyclic shape memory tests, one of the series can effortlessly achieve complete recovery in less than 10 second without any deficiency. |
---|---|
ISSN: | 0959-9428 1364-5501 |
DOI: | 10.1039/b910614f |