Loading…
Simulation of long-term future climate changes with the green McGill paleoclimate model: the next glacial inception
The multi-component “green” McGill Paleoclimate Model (MPM), which includes interactive vegetation, is used to simulate the next glacial inception under orbital and prescribed atmospheric CO₂ forcing. This intermediate complexity model is first run for short-term periods with an increasing atmospher...
Saved in:
Published in: | Climatic change 2006-12, Vol.79 (3-4), p.381-401 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a442t-98c86bb399047e940e2179d19c6fbfd8e2c69687e5303a6d48d8027813e49a773 |
---|---|
cites | cdi_FETCH-LOGICAL-a442t-98c86bb399047e940e2179d19c6fbfd8e2c69687e5303a6d48d8027813e49a773 |
container_end_page | 401 |
container_issue | 3-4 |
container_start_page | 381 |
container_title | Climatic change |
container_volume | 79 |
creator | Cochelin, Anne-Sophie B Mysak, Lawrence A Wang, Zhaomin |
description | The multi-component “green” McGill Paleoclimate Model (MPM), which includes interactive vegetation, is used to simulate the next glacial inception under orbital and prescribed atmospheric CO₂ forcing. This intermediate complexity model is first run for short-term periods with an increasing atmospheric CO₂ concentration; the model's response is in general agreement with the results of GCMs for CO₂ doubling. The green MPM is then used to derive projections of the climate for the next 100 kyr. Under a constant CO₂ level, the model produces three types of evolution for the ice volume: an imminent glacial inception (low CO₂ levels), a glacial inception in 50 kyr (CO₂ levels of 280 or 290 ppm), or no glacial inception during the next 100 kyr (CO₂ levels of 300 ppm and higher). This high sensitivity to the CO₂ level is due to the exceptionally weak future variations of the summer insolation at high northern latitudes. The changes in vegetation re-inforce the buildup of ice sheets after glacial inception. Finally, if an initial global warming episode of finite duration is included, after which the atmospheric CO₂ level is assumed to stabilize at 280, 290 or 300 ppm, the impact of this warming is seen only in the first 5 kyr of the run; after this time the response is insensitive to the early warming perturbation. |
doi_str_mv | 10.1007/s10584-006-9099-1 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_36222333</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1175544361</sourcerecordid><originalsourceid>FETCH-LOGICAL-a442t-98c86bb399047e940e2179d19c6fbfd8e2c69687e5303a6d48d8027813e49a773</originalsourceid><addsrcrecordid>eNqFkU1v1DAQhi0EEkvhB3DCQoJbwGM7_uCGKmgrFXEoPVteZ5JN5cSLnQj49zhsERKX-jKW_Mwz8ryEvAT2DhjT7wuw1siGMdVYZm0Dj8gOWi0akIY9JjsGqq2vzD4lz0q5226aqx0pN-O0Rr-MaaappzHNQ7Ngnmi_LmtGGuI4-aXWg58HLPTHuBzockA6ZMSZfgkXY4z06COmv-iUOowf_kAz_lzoEH0YfaTjHPC4DXpOnvQ-FnxxX8_I7edP384vm-uvF1fnH68bLyVfGmuCUfu9sJZJjVYy5KBtBzaoft93BnlQVhmNrWDCq06azjCuDQiU1mstzsjbk_eY0_cVy-KmsQSM0c-Y1uKE4pyLeh4COYBRmj9s5EyBUAAVfP0feJfWPNffOrCmBZDKVghOUMiplIy9O-a6wvzLAXNbqu6Uqqupui1Vt4nf3It9CT722c9hLP8ajdBK2c396sT1Pjk_5Mrc3nAGomq10cqI3ySMqng</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>198511469</pqid></control><display><type>article</type><title>Simulation of long-term future climate changes with the green McGill paleoclimate model: the next glacial inception</title><source>ABI/INFORM Global</source><source>Springer Nature</source><creator>Cochelin, Anne-Sophie B ; Mysak, Lawrence A ; Wang, Zhaomin</creator><creatorcontrib>Cochelin, Anne-Sophie B ; Mysak, Lawrence A ; Wang, Zhaomin</creatorcontrib><description>The multi-component “green” McGill Paleoclimate Model (MPM), which includes interactive vegetation, is used to simulate the next glacial inception under orbital and prescribed atmospheric CO₂ forcing. This intermediate complexity model is first run for short-term periods with an increasing atmospheric CO₂ concentration; the model's response is in general agreement with the results of GCMs for CO₂ doubling. The green MPM is then used to derive projections of the climate for the next 100 kyr. Under a constant CO₂ level, the model produces three types of evolution for the ice volume: an imminent glacial inception (low CO₂ levels), a glacial inception in 50 kyr (CO₂ levels of 280 or 290 ppm), or no glacial inception during the next 100 kyr (CO₂ levels of 300 ppm and higher). This high sensitivity to the CO₂ level is due to the exceptionally weak future variations of the summer insolation at high northern latitudes. The changes in vegetation re-inforce the buildup of ice sheets after glacial inception. Finally, if an initial global warming episode of finite duration is included, after which the atmospheric CO₂ level is assumed to stabilize at 280, 290 or 300 ppm, the impact of this warming is seen only in the first 5 kyr of the run; after this time the response is insensitive to the early warming perturbation.</description><identifier>ISSN: 0165-0009</identifier><identifier>EISSN: 1573-1480</identifier><identifier>DOI: 10.1007/s10584-006-9099-1</identifier><identifier>CODEN: CLCHDX</identifier><language>eng</language><publisher>Dordrecht: Dordrecht : Kluwer Academic Publishers</publisher><subject>Atmosphere ; Atmospheric models ; Carbon dioxide ; Climate change ; Climatology. Bioclimatology. Climate change ; Computer simulation ; Earth, ocean, space ; Exact sciences and technology ; External geophysics ; Flowers & plants ; General circulation models ; Glaciers ; Global warming ; Greenhouse gases ; Ice ages ; Ice sheets ; Meteorology ; Paleoclimate ; Vegetation</subject><ispartof>Climatic change, 2006-12, Vol.79 (3-4), p.381-401</ispartof><rights>2007 INIST-CNRS</rights><rights>Springer Science+Business Media, B.V. 2006</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a442t-98c86bb399047e940e2179d19c6fbfd8e2c69687e5303a6d48d8027813e49a773</citedby><cites>FETCH-LOGICAL-a442t-98c86bb399047e940e2179d19c6fbfd8e2c69687e5303a6d48d8027813e49a773</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/198511469/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/198511469?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,11687,27923,27924,36059,36060,44362,74666</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18376699$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Cochelin, Anne-Sophie B</creatorcontrib><creatorcontrib>Mysak, Lawrence A</creatorcontrib><creatorcontrib>Wang, Zhaomin</creatorcontrib><title>Simulation of long-term future climate changes with the green McGill paleoclimate model: the next glacial inception</title><title>Climatic change</title><description>The multi-component “green” McGill Paleoclimate Model (MPM), which includes interactive vegetation, is used to simulate the next glacial inception under orbital and prescribed atmospheric CO₂ forcing. This intermediate complexity model is first run for short-term periods with an increasing atmospheric CO₂ concentration; the model's response is in general agreement with the results of GCMs for CO₂ doubling. The green MPM is then used to derive projections of the climate for the next 100 kyr. Under a constant CO₂ level, the model produces three types of evolution for the ice volume: an imminent glacial inception (low CO₂ levels), a glacial inception in 50 kyr (CO₂ levels of 280 or 290 ppm), or no glacial inception during the next 100 kyr (CO₂ levels of 300 ppm and higher). This high sensitivity to the CO₂ level is due to the exceptionally weak future variations of the summer insolation at high northern latitudes. The changes in vegetation re-inforce the buildup of ice sheets after glacial inception. Finally, if an initial global warming episode of finite duration is included, after which the atmospheric CO₂ level is assumed to stabilize at 280, 290 or 300 ppm, the impact of this warming is seen only in the first 5 kyr of the run; after this time the response is insensitive to the early warming perturbation.</description><subject>Atmosphere</subject><subject>Atmospheric models</subject><subject>Carbon dioxide</subject><subject>Climate change</subject><subject>Climatology. Bioclimatology. Climate change</subject><subject>Computer simulation</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>External geophysics</subject><subject>Flowers & plants</subject><subject>General circulation models</subject><subject>Glaciers</subject><subject>Global warming</subject><subject>Greenhouse gases</subject><subject>Ice ages</subject><subject>Ice sheets</subject><subject>Meteorology</subject><subject>Paleoclimate</subject><subject>Vegetation</subject><issn>0165-0009</issn><issn>1573-1480</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNqFkU1v1DAQhi0EEkvhB3DCQoJbwGM7_uCGKmgrFXEoPVteZ5JN5cSLnQj49zhsERKX-jKW_Mwz8ryEvAT2DhjT7wuw1siGMdVYZm0Dj8gOWi0akIY9JjsGqq2vzD4lz0q5226aqx0pN-O0Rr-MaaappzHNQ7Ngnmi_LmtGGuI4-aXWg58HLPTHuBzockA6ZMSZfgkXY4z06COmv-iUOowf_kAz_lzoEH0YfaTjHPC4DXpOnvQ-FnxxX8_I7edP384vm-uvF1fnH68bLyVfGmuCUfu9sJZJjVYy5KBtBzaoft93BnlQVhmNrWDCq06azjCuDQiU1mstzsjbk_eY0_cVy-KmsQSM0c-Y1uKE4pyLeh4COYBRmj9s5EyBUAAVfP0feJfWPNffOrCmBZDKVghOUMiplIy9O-a6wvzLAXNbqu6Uqqupui1Vt4nf3It9CT722c9hLP8ajdBK2c396sT1Pjk_5Mrc3nAGomq10cqI3ySMqng</recordid><startdate>20061201</startdate><enddate>20061201</enddate><creator>Cochelin, Anne-Sophie B</creator><creator>Mysak, Lawrence A</creator><creator>Wang, Zhaomin</creator><general>Dordrecht : Kluwer Academic Publishers</general><general>Springer</general><general>Springer Nature B.V</general><scope>FBQ</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7ST</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>F28</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H97</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>KL.</scope><scope>KR7</scope><scope>L.-</scope><scope>L.G</scope><scope>L6V</scope><scope>M0C</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>SOI</scope><scope>7TV</scope><scope>7U6</scope></search><sort><creationdate>20061201</creationdate><title>Simulation of long-term future climate changes with the green McGill paleoclimate model: the next glacial inception</title><author>Cochelin, Anne-Sophie B ; Mysak, Lawrence A ; Wang, Zhaomin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a442t-98c86bb399047e940e2179d19c6fbfd8e2c69687e5303a6d48d8027813e49a773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Atmosphere</topic><topic>Atmospheric models</topic><topic>Carbon dioxide</topic><topic>Climate change</topic><topic>Climatology. Bioclimatology. Climate change</topic><topic>Computer simulation</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>External geophysics</topic><topic>Flowers & plants</topic><topic>General circulation models</topic><topic>Glaciers</topic><topic>Global warming</topic><topic>Greenhouse gases</topic><topic>Ice ages</topic><topic>Ice sheets</topic><topic>Meteorology</topic><topic>Paleoclimate</topic><topic>Vegetation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cochelin, Anne-Sophie B</creatorcontrib><creatorcontrib>Mysak, Lawrence A</creatorcontrib><creatorcontrib>Wang, Zhaomin</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Environment Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ABI/INFORM Collection (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>ABI/INFORM Global</collection><collection>ProQuest Research Library</collection><collection>ProQuest Science Journals</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>Environment Abstracts</collection><collection>Pollution Abstracts</collection><collection>Sustainability Science Abstracts</collection><jtitle>Climatic change</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cochelin, Anne-Sophie B</au><au>Mysak, Lawrence A</au><au>Wang, Zhaomin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Simulation of long-term future climate changes with the green McGill paleoclimate model: the next glacial inception</atitle><jtitle>Climatic change</jtitle><date>2006-12-01</date><risdate>2006</risdate><volume>79</volume><issue>3-4</issue><spage>381</spage><epage>401</epage><pages>381-401</pages><issn>0165-0009</issn><eissn>1573-1480</eissn><coden>CLCHDX</coden><abstract>The multi-component “green” McGill Paleoclimate Model (MPM), which includes interactive vegetation, is used to simulate the next glacial inception under orbital and prescribed atmospheric CO₂ forcing. This intermediate complexity model is first run for short-term periods with an increasing atmospheric CO₂ concentration; the model's response is in general agreement with the results of GCMs for CO₂ doubling. The green MPM is then used to derive projections of the climate for the next 100 kyr. Under a constant CO₂ level, the model produces three types of evolution for the ice volume: an imminent glacial inception (low CO₂ levels), a glacial inception in 50 kyr (CO₂ levels of 280 or 290 ppm), or no glacial inception during the next 100 kyr (CO₂ levels of 300 ppm and higher). This high sensitivity to the CO₂ level is due to the exceptionally weak future variations of the summer insolation at high northern latitudes. The changes in vegetation re-inforce the buildup of ice sheets after glacial inception. Finally, if an initial global warming episode of finite duration is included, after which the atmospheric CO₂ level is assumed to stabilize at 280, 290 or 300 ppm, the impact of this warming is seen only in the first 5 kyr of the run; after this time the response is insensitive to the early warming perturbation.</abstract><cop>Dordrecht</cop><pub>Dordrecht : Kluwer Academic Publishers</pub><doi>10.1007/s10584-006-9099-1</doi><tpages>21</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0165-0009 |
ispartof | Climatic change, 2006-12, Vol.79 (3-4), p.381-401 |
issn | 0165-0009 1573-1480 |
language | eng |
recordid | cdi_proquest_miscellaneous_36222333 |
source | ABI/INFORM Global; Springer Nature |
subjects | Atmosphere Atmospheric models Carbon dioxide Climate change Climatology. Bioclimatology. Climate change Computer simulation Earth, ocean, space Exact sciences and technology External geophysics Flowers & plants General circulation models Glaciers Global warming Greenhouse gases Ice ages Ice sheets Meteorology Paleoclimate Vegetation |
title | Simulation of long-term future climate changes with the green McGill paleoclimate model: the next glacial inception |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T23%3A40%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Simulation%20of%20long-term%20future%20climate%20changes%20with%20the%20green%20McGill%20paleoclimate%20model:%20the%20next%20glacial%20inception&rft.jtitle=Climatic%20change&rft.au=Cochelin,%20Anne-Sophie%20B&rft.date=2006-12-01&rft.volume=79&rft.issue=3-4&rft.spage=381&rft.epage=401&rft.pages=381-401&rft.issn=0165-0009&rft.eissn=1573-1480&rft.coden=CLCHDX&rft_id=info:doi/10.1007/s10584-006-9099-1&rft_dat=%3Cproquest_cross%3E1175544361%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a442t-98c86bb399047e940e2179d19c6fbfd8e2c69687e5303a6d48d8027813e49a773%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=198511469&rft_id=info:pmid/&rfr_iscdi=true |