Loading…

Sensitivity of the Lanczos recurrence to Gaussian quadrature data: How malignant can small weights be?

Stability of passing from Gaussian quadrature data to the Lanczos recurrence coefficients is considered. Special attention is paid to estimates explicitly expressed in terms of quadrature data and not having weights in denominators. It has been shown that the recent approach, exploiting integral rep...

Full description

Saved in:
Bibliographic Details
Published in:Journal of computational and applied mathematics 2010, Vol.233 (5), p.1238-1244
Main Author: Knizhnerman, Leonid
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c371t-bfeee693d1b047ece123f7d20d15bd900929d29104f1b0033927beb121ed76ff3
cites cdi_FETCH-LOGICAL-c371t-bfeee693d1b047ece123f7d20d15bd900929d29104f1b0033927beb121ed76ff3
container_end_page 1244
container_issue 5
container_start_page 1238
container_title Journal of computational and applied mathematics
container_volume 233
creator Knizhnerman, Leonid
description Stability of passing from Gaussian quadrature data to the Lanczos recurrence coefficients is considered. Special attention is paid to estimates explicitly expressed in terms of quadrature data and not having weights in denominators. It has been shown that the recent approach, exploiting integral representation of Hankel determinants, implies quantitative improvement of D. Laurie’s constructive estimate. It has also been demonstrated that a particular implementation on the Hankel determinant approach gives an estimate being unimprovable up to a coefficient; the corresponding example involves quadrature data with a small but not too small weight. It follows that polynomial increase of a general case upper bound in terms of the dimension is unavoidable.
doi_str_mv 10.1016/j.cam.2007.12.028
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_36238660</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0377042709001782</els_id><sourcerecordid>36238660</sourcerecordid><originalsourceid>FETCH-LOGICAL-c371t-bfeee693d1b047ece123f7d20d15bd900929d29104f1b0033927beb121ed76ff3</originalsourceid><addsrcrecordid>eNp9kE1rGzEQQEVIIU7aH5CbTr3tdkZyVt70UIrJFxhySHIWWmmUyKx3bUnrkP76yLjnnIaB9wbmMXaJUCNg82tdW7OpBYCqUdQgFidshgvVVqjU4pTNQCpVwVyoM3ae0hoAmhbnM-afaEghh33IH3z0PL8RX5nB_hsTj2SnGGmwxPPI78yUUjAD303GRZOnSNyZbK75_fjON6YPr4MZMrcFSWXt-TuF17eceEd_vrNv3vSJfvyfF-zl9uZ5eV-tHu8eln9XlZUKc9V5Impa6bCDuSJLKKRXToDDq861AK1onWgR5r4QIGUrVEcdCiSnGu_lBft5vLuN426ilPUmJEt9bwYap6RlI-SiaaCAeARtHFOK5PU2ho2JHxpBH4rqtS5F9aGoRqFL0eL8PjpUPtgHijrZcMjjQkmVtRvDF_YnRjp_jg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>36238660</pqid></control><display><type>article</type><title>Sensitivity of the Lanczos recurrence to Gaussian quadrature data: How malignant can small weights be?</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Knizhnerman, Leonid</creator><creatorcontrib>Knizhnerman, Leonid</creatorcontrib><description>Stability of passing from Gaussian quadrature data to the Lanczos recurrence coefficients is considered. Special attention is paid to estimates explicitly expressed in terms of quadrature data and not having weights in denominators. It has been shown that the recent approach, exploiting integral representation of Hankel determinants, implies quantitative improvement of D. Laurie’s constructive estimate. It has also been demonstrated that a particular implementation on the Hankel determinant approach gives an estimate being unimprovable up to a coefficient; the corresponding example involves quadrature data with a small but not too small weight. It follows that polynomial increase of a general case upper bound in terms of the dimension is unavoidable.</description><identifier>ISSN: 0377-0427</identifier><identifier>EISSN: 1879-1778</identifier><identifier>DOI: 10.1016/j.cam.2007.12.028</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Gaussian quadrature formula ; Jacobi inverse eigenvalue problem ; Lanczos recurrence ; Orthogonal polynomials ; Small weights ; Stability estimates</subject><ispartof>Journal of computational and applied mathematics, 2010, Vol.233 (5), p.1238-1244</ispartof><rights>2009 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c371t-bfeee693d1b047ece123f7d20d15bd900929d29104f1b0033927beb121ed76ff3</citedby><cites>FETCH-LOGICAL-c371t-bfeee693d1b047ece123f7d20d15bd900929d29104f1b0033927beb121ed76ff3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4024,27923,27924,27925</link.rule.ids></links><search><creatorcontrib>Knizhnerman, Leonid</creatorcontrib><title>Sensitivity of the Lanczos recurrence to Gaussian quadrature data: How malignant can small weights be?</title><title>Journal of computational and applied mathematics</title><description>Stability of passing from Gaussian quadrature data to the Lanczos recurrence coefficients is considered. Special attention is paid to estimates explicitly expressed in terms of quadrature data and not having weights in denominators. It has been shown that the recent approach, exploiting integral representation of Hankel determinants, implies quantitative improvement of D. Laurie’s constructive estimate. It has also been demonstrated that a particular implementation on the Hankel determinant approach gives an estimate being unimprovable up to a coefficient; the corresponding example involves quadrature data with a small but not too small weight. It follows that polynomial increase of a general case upper bound in terms of the dimension is unavoidable.</description><subject>Gaussian quadrature formula</subject><subject>Jacobi inverse eigenvalue problem</subject><subject>Lanczos recurrence</subject><subject>Orthogonal polynomials</subject><subject>Small weights</subject><subject>Stability estimates</subject><issn>0377-0427</issn><issn>1879-1778</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp9kE1rGzEQQEVIIU7aH5CbTr3tdkZyVt70UIrJFxhySHIWWmmUyKx3bUnrkP76yLjnnIaB9wbmMXaJUCNg82tdW7OpBYCqUdQgFidshgvVVqjU4pTNQCpVwVyoM3ae0hoAmhbnM-afaEghh33IH3z0PL8RX5nB_hsTj2SnGGmwxPPI78yUUjAD303GRZOnSNyZbK75_fjON6YPr4MZMrcFSWXt-TuF17eceEd_vrNv3vSJfvyfF-zl9uZ5eV-tHu8eln9XlZUKc9V5Impa6bCDuSJLKKRXToDDq861AK1onWgR5r4QIGUrVEcdCiSnGu_lBft5vLuN426ilPUmJEt9bwYap6RlI-SiaaCAeARtHFOK5PU2ho2JHxpBH4rqtS5F9aGoRqFL0eL8PjpUPtgHijrZcMjjQkmVtRvDF_YnRjp_jg</recordid><startdate>2010</startdate><enddate>2010</enddate><creator>Knizhnerman, Leonid</creator><general>Elsevier B.V</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>2010</creationdate><title>Sensitivity of the Lanczos recurrence to Gaussian quadrature data: How malignant can small weights be?</title><author>Knizhnerman, Leonid</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c371t-bfeee693d1b047ece123f7d20d15bd900929d29104f1b0033927beb121ed76ff3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Gaussian quadrature formula</topic><topic>Jacobi inverse eigenvalue problem</topic><topic>Lanczos recurrence</topic><topic>Orthogonal polynomials</topic><topic>Small weights</topic><topic>Stability estimates</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Knizhnerman, Leonid</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of computational and applied mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Knizhnerman, Leonid</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sensitivity of the Lanczos recurrence to Gaussian quadrature data: How malignant can small weights be?</atitle><jtitle>Journal of computational and applied mathematics</jtitle><date>2010</date><risdate>2010</risdate><volume>233</volume><issue>5</issue><spage>1238</spage><epage>1244</epage><pages>1238-1244</pages><issn>0377-0427</issn><eissn>1879-1778</eissn><abstract>Stability of passing from Gaussian quadrature data to the Lanczos recurrence coefficients is considered. Special attention is paid to estimates explicitly expressed in terms of quadrature data and not having weights in denominators. It has been shown that the recent approach, exploiting integral representation of Hankel determinants, implies quantitative improvement of D. Laurie’s constructive estimate. It has also been demonstrated that a particular implementation on the Hankel determinant approach gives an estimate being unimprovable up to a coefficient; the corresponding example involves quadrature data with a small but not too small weight. It follows that polynomial increase of a general case upper bound in terms of the dimension is unavoidable.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.cam.2007.12.028</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0377-0427
ispartof Journal of computational and applied mathematics, 2010, Vol.233 (5), p.1238-1244
issn 0377-0427
1879-1778
language eng
recordid cdi_proquest_miscellaneous_36238660
source ScienceDirect Freedom Collection 2022-2024
subjects Gaussian quadrature formula
Jacobi inverse eigenvalue problem
Lanczos recurrence
Orthogonal polynomials
Small weights
Stability estimates
title Sensitivity of the Lanczos recurrence to Gaussian quadrature data: How malignant can small weights be?
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T20%3A16%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sensitivity%20of%20the%20Lanczos%20recurrence%20to%20Gaussian%20quadrature%20data:%20How%20malignant%20can%20small%20weights%20be?&rft.jtitle=Journal%20of%20computational%20and%20applied%20mathematics&rft.au=Knizhnerman,%20Leonid&rft.date=2010&rft.volume=233&rft.issue=5&rft.spage=1238&rft.epage=1244&rft.pages=1238-1244&rft.issn=0377-0427&rft.eissn=1879-1778&rft_id=info:doi/10.1016/j.cam.2007.12.028&rft_dat=%3Cproquest_cross%3E36238660%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c371t-bfeee693d1b047ece123f7d20d15bd900929d29104f1b0033927beb121ed76ff3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=36238660&rft_id=info:pmid/&rfr_iscdi=true