Loading…
Sensitivity of the Lanczos recurrence to Gaussian quadrature data: How malignant can small weights be?
Stability of passing from Gaussian quadrature data to the Lanczos recurrence coefficients is considered. Special attention is paid to estimates explicitly expressed in terms of quadrature data and not having weights in denominators. It has been shown that the recent approach, exploiting integral rep...
Saved in:
Published in: | Journal of computational and applied mathematics 2010, Vol.233 (5), p.1238-1244 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c371t-bfeee693d1b047ece123f7d20d15bd900929d29104f1b0033927beb121ed76ff3 |
---|---|
cites | cdi_FETCH-LOGICAL-c371t-bfeee693d1b047ece123f7d20d15bd900929d29104f1b0033927beb121ed76ff3 |
container_end_page | 1244 |
container_issue | 5 |
container_start_page | 1238 |
container_title | Journal of computational and applied mathematics |
container_volume | 233 |
creator | Knizhnerman, Leonid |
description | Stability of passing from Gaussian quadrature data to the Lanczos recurrence coefficients is considered. Special attention is paid to estimates explicitly expressed in terms of quadrature data and not having weights in denominators. It has been shown that the recent approach, exploiting integral representation of Hankel determinants, implies quantitative improvement of D. Laurie’s constructive estimate.
It has also been demonstrated that a particular implementation on the Hankel determinant approach gives an estimate being unimprovable up to a coefficient; the corresponding example involves quadrature data with a small but not too small weight. It follows that polynomial increase of a general case upper bound in terms of the dimension is unavoidable. |
doi_str_mv | 10.1016/j.cam.2007.12.028 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_36238660</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0377042709001782</els_id><sourcerecordid>36238660</sourcerecordid><originalsourceid>FETCH-LOGICAL-c371t-bfeee693d1b047ece123f7d20d15bd900929d29104f1b0033927beb121ed76ff3</originalsourceid><addsrcrecordid>eNp9kE1rGzEQQEVIIU7aH5CbTr3tdkZyVt70UIrJFxhySHIWWmmUyKx3bUnrkP76yLjnnIaB9wbmMXaJUCNg82tdW7OpBYCqUdQgFidshgvVVqjU4pTNQCpVwVyoM3ae0hoAmhbnM-afaEghh33IH3z0PL8RX5nB_hsTj2SnGGmwxPPI78yUUjAD303GRZOnSNyZbK75_fjON6YPr4MZMrcFSWXt-TuF17eceEd_vrNv3vSJfvyfF-zl9uZ5eV-tHu8eln9XlZUKc9V5Impa6bCDuSJLKKRXToDDq861AK1onWgR5r4QIGUrVEcdCiSnGu_lBft5vLuN426ilPUmJEt9bwYap6RlI-SiaaCAeARtHFOK5PU2ho2JHxpBH4rqtS5F9aGoRqFL0eL8PjpUPtgHijrZcMjjQkmVtRvDF_YnRjp_jg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>36238660</pqid></control><display><type>article</type><title>Sensitivity of the Lanczos recurrence to Gaussian quadrature data: How malignant can small weights be?</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Knizhnerman, Leonid</creator><creatorcontrib>Knizhnerman, Leonid</creatorcontrib><description>Stability of passing from Gaussian quadrature data to the Lanczos recurrence coefficients is considered. Special attention is paid to estimates explicitly expressed in terms of quadrature data and not having weights in denominators. It has been shown that the recent approach, exploiting integral representation of Hankel determinants, implies quantitative improvement of D. Laurie’s constructive estimate.
It has also been demonstrated that a particular implementation on the Hankel determinant approach gives an estimate being unimprovable up to a coefficient; the corresponding example involves quadrature data with a small but not too small weight. It follows that polynomial increase of a general case upper bound in terms of the dimension is unavoidable.</description><identifier>ISSN: 0377-0427</identifier><identifier>EISSN: 1879-1778</identifier><identifier>DOI: 10.1016/j.cam.2007.12.028</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Gaussian quadrature formula ; Jacobi inverse eigenvalue problem ; Lanczos recurrence ; Orthogonal polynomials ; Small weights ; Stability estimates</subject><ispartof>Journal of computational and applied mathematics, 2010, Vol.233 (5), p.1238-1244</ispartof><rights>2009 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c371t-bfeee693d1b047ece123f7d20d15bd900929d29104f1b0033927beb121ed76ff3</citedby><cites>FETCH-LOGICAL-c371t-bfeee693d1b047ece123f7d20d15bd900929d29104f1b0033927beb121ed76ff3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4024,27923,27924,27925</link.rule.ids></links><search><creatorcontrib>Knizhnerman, Leonid</creatorcontrib><title>Sensitivity of the Lanczos recurrence to Gaussian quadrature data: How malignant can small weights be?</title><title>Journal of computational and applied mathematics</title><description>Stability of passing from Gaussian quadrature data to the Lanczos recurrence coefficients is considered. Special attention is paid to estimates explicitly expressed in terms of quadrature data and not having weights in denominators. It has been shown that the recent approach, exploiting integral representation of Hankel determinants, implies quantitative improvement of D. Laurie’s constructive estimate.
It has also been demonstrated that a particular implementation on the Hankel determinant approach gives an estimate being unimprovable up to a coefficient; the corresponding example involves quadrature data with a small but not too small weight. It follows that polynomial increase of a general case upper bound in terms of the dimension is unavoidable.</description><subject>Gaussian quadrature formula</subject><subject>Jacobi inverse eigenvalue problem</subject><subject>Lanczos recurrence</subject><subject>Orthogonal polynomials</subject><subject>Small weights</subject><subject>Stability estimates</subject><issn>0377-0427</issn><issn>1879-1778</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp9kE1rGzEQQEVIIU7aH5CbTr3tdkZyVt70UIrJFxhySHIWWmmUyKx3bUnrkP76yLjnnIaB9wbmMXaJUCNg82tdW7OpBYCqUdQgFidshgvVVqjU4pTNQCpVwVyoM3ae0hoAmhbnM-afaEghh33IH3z0PL8RX5nB_hsTj2SnGGmwxPPI78yUUjAD303GRZOnSNyZbK75_fjON6YPr4MZMrcFSWXt-TuF17eceEd_vrNv3vSJfvyfF-zl9uZ5eV-tHu8eln9XlZUKc9V5Impa6bCDuSJLKKRXToDDq861AK1onWgR5r4QIGUrVEcdCiSnGu_lBft5vLuN426ilPUmJEt9bwYap6RlI-SiaaCAeARtHFOK5PU2ho2JHxpBH4rqtS5F9aGoRqFL0eL8PjpUPtgHijrZcMjjQkmVtRvDF_YnRjp_jg</recordid><startdate>2010</startdate><enddate>2010</enddate><creator>Knizhnerman, Leonid</creator><general>Elsevier B.V</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>2010</creationdate><title>Sensitivity of the Lanczos recurrence to Gaussian quadrature data: How malignant can small weights be?</title><author>Knizhnerman, Leonid</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c371t-bfeee693d1b047ece123f7d20d15bd900929d29104f1b0033927beb121ed76ff3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Gaussian quadrature formula</topic><topic>Jacobi inverse eigenvalue problem</topic><topic>Lanczos recurrence</topic><topic>Orthogonal polynomials</topic><topic>Small weights</topic><topic>Stability estimates</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Knizhnerman, Leonid</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of computational and applied mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Knizhnerman, Leonid</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sensitivity of the Lanczos recurrence to Gaussian quadrature data: How malignant can small weights be?</atitle><jtitle>Journal of computational and applied mathematics</jtitle><date>2010</date><risdate>2010</risdate><volume>233</volume><issue>5</issue><spage>1238</spage><epage>1244</epage><pages>1238-1244</pages><issn>0377-0427</issn><eissn>1879-1778</eissn><abstract>Stability of passing from Gaussian quadrature data to the Lanczos recurrence coefficients is considered. Special attention is paid to estimates explicitly expressed in terms of quadrature data and not having weights in denominators. It has been shown that the recent approach, exploiting integral representation of Hankel determinants, implies quantitative improvement of D. Laurie’s constructive estimate.
It has also been demonstrated that a particular implementation on the Hankel determinant approach gives an estimate being unimprovable up to a coefficient; the corresponding example involves quadrature data with a small but not too small weight. It follows that polynomial increase of a general case upper bound in terms of the dimension is unavoidable.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.cam.2007.12.028</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0377-0427 |
ispartof | Journal of computational and applied mathematics, 2010, Vol.233 (5), p.1238-1244 |
issn | 0377-0427 1879-1778 |
language | eng |
recordid | cdi_proquest_miscellaneous_36238660 |
source | ScienceDirect Freedom Collection 2022-2024 |
subjects | Gaussian quadrature formula Jacobi inverse eigenvalue problem Lanczos recurrence Orthogonal polynomials Small weights Stability estimates |
title | Sensitivity of the Lanczos recurrence to Gaussian quadrature data: How malignant can small weights be? |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T20%3A16%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sensitivity%20of%20the%20Lanczos%20recurrence%20to%20Gaussian%20quadrature%20data:%20How%20malignant%20can%20small%20weights%20be?&rft.jtitle=Journal%20of%20computational%20and%20applied%20mathematics&rft.au=Knizhnerman,%20Leonid&rft.date=2010&rft.volume=233&rft.issue=5&rft.spage=1238&rft.epage=1244&rft.pages=1238-1244&rft.issn=0377-0427&rft.eissn=1879-1778&rft_id=info:doi/10.1016/j.cam.2007.12.028&rft_dat=%3Cproquest_cross%3E36238660%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c371t-bfeee693d1b047ece123f7d20d15bd900929d29104f1b0033927beb121ed76ff3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=36238660&rft_id=info:pmid/&rfr_iscdi=true |