Loading…
A study on the actuator efficiency behavior of safety-related motor operated gate and globe valves
Periodically, the operability of the safety-related motor-operated valves (MOVs) in nuclear power plants must be verified. Because the actuator efficiency is one of the most important factors in the determination of the actuator output, it should be considered in ensuring the operability of MOVs dur...
Saved in:
Published in: | Nuclear engineering and design 2009-12, Vol.239 (12), p.2705-2712 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Periodically, the operability of the safety-related motor-operated valves (MOVs) in nuclear power plants must be verified. Because the actuator efficiency is one of the most important factors in the determination of the actuator output, it should be considered in ensuring the operability of MOVs during the verification duration. In particular, special consideration should be paid to its potential degradation, but the design efficiency provided by manufacturers is usually used because the actuator efficiency calculation is difficult and requires considerable time and effort. In this paper, a method is introduced to calculate actuator efficiency by using diagnostic signals acquired in field tests. The actuator efficiency was calculated from the estimated motor torque, the stem thrust measured in field tests, and overall gear ratio provided by manufactures. The motor torque was estimated by using an algorithm, which can calculate electric torque from the three phases of currents and voltages, resistances between phases acquired in field tests. The validation of the design efficiencies was evaluated by comparing those efficiencies with the calculated actuator efficiencies. And, the age-related degradation was analyzed through the behavior analysis over time of the calculated actuator efficiencies. Most of the actuator efficiencies were found not to be degraded over time and kept efficiency greater than the design efficiency. However, two actuator efficiencies with lower motor speed, overall gear ratio, and maximum motor torque rating are susceptible to be lower than the design efficiencies. For the two actuators, threshold efficiencies were calculated and provided to replace their design efficiencies. |
---|---|
ISSN: | 0029-5493 1872-759X |
DOI: | 10.1016/j.nucengdes.2009.08.017 |