Loading…

The stoichiometry of FeSe

Tetragonal iron selenide, FeSe, the layered parent compound of the recently discovered superconducting arsenide family, has previously been shown to be non-magnetic and superconducting with a critical temperature near 8 K. There has, however, been a lack of consensus as to whether selenium vacancies...

Full description

Saved in:
Bibliographic Details
Published in:Solid state communications 2009-10, Vol.149 (37), p.1507-1509
Main Authors: Williams, A.J., McQueen, T.M., Cava, R.J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c358t-ae513e36a7dd9bbfa335ed89716d2c03d234d60177a055b98b42f0ac16d6f62e3
cites cdi_FETCH-LOGICAL-c358t-ae513e36a7dd9bbfa335ed89716d2c03d234d60177a055b98b42f0ac16d6f62e3
container_end_page 1509
container_issue 37
container_start_page 1507
container_title Solid state communications
container_volume 149
creator Williams, A.J.
McQueen, T.M.
Cava, R.J.
description Tetragonal iron selenide, FeSe, the layered parent compound of the recently discovered superconducting arsenide family, has previously been shown to be non-magnetic and superconducting with a critical temperature near 8 K. There has, however, been a lack of consensus as to whether selenium vacancies present due to large deviations from ideal stoichiometry are required to give rise to the superconductivity. Here we describe the results of experiments that demonstrate simply that superconducting iron selenide can only be synthesized as a pure material when near stoichiometric (i.e. FeSe). Significant selenium deficiency or excess gives rise to secondary magnetic phases, and a suppression of the superconductivity.
doi_str_mv 10.1016/j.ssc.2009.07.011
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_36291098</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0038109809004323</els_id><sourcerecordid>36291098</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-ae513e36a7dd9bbfa335ed89716d2c03d234d60177a055b98b42f0ac16d6f62e3</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EEqXwA7p1gS3hbDd2LCZUUUCqxECZLcc-q67SptgpUv89jloxMt1wz3sfDyETCiUFKh43ZUq2ZACqBFkCpRdkRGupCiaFuCQjAF4XFFR9TW5S2gCArCUdkclqjdPUd8GuQ7fFPh6nnZ8u8BNvyZU3bcK7cx2Tr8XLav5WLD9e3-fPy8Lyqu4LgxXlyIWRzqmm8YbzCl2tJBWOWeCO8ZkTQKU0UFWNqpsZ82BsbgsvGPIxeTjN3cfu-4Cp19uQLLat2WF3SJoLpobDM0hPoI1dShG93sewNfGoKehBgt7oLEEPEjRInSXkzP15uEnWtD6anQ3pL8ioAsnELHNPJw7zpz8Bo0424M6iCxFtr10X_tnyC4JDb6c</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>36291098</pqid></control><display><type>article</type><title>The stoichiometry of FeSe</title><source>ScienceDirect Freedom Collection</source><creator>Williams, A.J. ; McQueen, T.M. ; Cava, R.J.</creator><creatorcontrib>Williams, A.J. ; McQueen, T.M. ; Cava, R.J.</creatorcontrib><description>Tetragonal iron selenide, FeSe, the layered parent compound of the recently discovered superconducting arsenide family, has previously been shown to be non-magnetic and superconducting with a critical temperature near 8 K. There has, however, been a lack of consensus as to whether selenium vacancies present due to large deviations from ideal stoichiometry are required to give rise to the superconductivity. Here we describe the results of experiments that demonstrate simply that superconducting iron selenide can only be synthesized as a pure material when near stoichiometric (i.e. FeSe). Significant selenium deficiency or excess gives rise to secondary magnetic phases, and a suppression of the superconductivity.</description><identifier>ISSN: 0038-1098</identifier><identifier>EISSN: 1879-2766</identifier><identifier>DOI: 10.1016/j.ssc.2009.07.011</identifier><identifier>CODEN: SSCOA4</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>A. Superconductors ; B. Chemical synthesis ; Condensed matter: electronic structure, electrical, magnetic, and optical properties ; Effects of material synthesis, crystal structure, and chemical composition ; Exact sciences and technology ; Physics ; Superconductivity ; Transition temperature variations</subject><ispartof>Solid state communications, 2009-10, Vol.149 (37), p.1507-1509</ispartof><rights>2009 Elsevier Ltd</rights><rights>2009 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c358t-ae513e36a7dd9bbfa335ed89716d2c03d234d60177a055b98b42f0ac16d6f62e3</citedby><cites>FETCH-LOGICAL-c358t-ae513e36a7dd9bbfa335ed89716d2c03d234d60177a055b98b42f0ac16d6f62e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=21907264$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Williams, A.J.</creatorcontrib><creatorcontrib>McQueen, T.M.</creatorcontrib><creatorcontrib>Cava, R.J.</creatorcontrib><title>The stoichiometry of FeSe</title><title>Solid state communications</title><description>Tetragonal iron selenide, FeSe, the layered parent compound of the recently discovered superconducting arsenide family, has previously been shown to be non-magnetic and superconducting with a critical temperature near 8 K. There has, however, been a lack of consensus as to whether selenium vacancies present due to large deviations from ideal stoichiometry are required to give rise to the superconductivity. Here we describe the results of experiments that demonstrate simply that superconducting iron selenide can only be synthesized as a pure material when near stoichiometric (i.e. FeSe). Significant selenium deficiency or excess gives rise to secondary magnetic phases, and a suppression of the superconductivity.</description><subject>A. Superconductors</subject><subject>B. Chemical synthesis</subject><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties</subject><subject>Effects of material synthesis, crystal structure, and chemical composition</subject><subject>Exact sciences and technology</subject><subject>Physics</subject><subject>Superconductivity</subject><subject>Transition temperature variations</subject><issn>0038-1098</issn><issn>1879-2766</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAQhi0EEqXwA7p1gS3hbDd2LCZUUUCqxECZLcc-q67SptgpUv89jloxMt1wz3sfDyETCiUFKh43ZUq2ZACqBFkCpRdkRGupCiaFuCQjAF4XFFR9TW5S2gCArCUdkclqjdPUd8GuQ7fFPh6nnZ8u8BNvyZU3bcK7cx2Tr8XLav5WLD9e3-fPy8Lyqu4LgxXlyIWRzqmm8YbzCl2tJBWOWeCO8ZkTQKU0UFWNqpsZ82BsbgsvGPIxeTjN3cfu-4Cp19uQLLat2WF3SJoLpobDM0hPoI1dShG93sewNfGoKehBgt7oLEEPEjRInSXkzP15uEnWtD6anQ3pL8ioAsnELHNPJw7zpz8Bo0424M6iCxFtr10X_tnyC4JDb6c</recordid><startdate>20091001</startdate><enddate>20091001</enddate><creator>Williams, A.J.</creator><creator>McQueen, T.M.</creator><creator>Cava, R.J.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>7U5</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20091001</creationdate><title>The stoichiometry of FeSe</title><author>Williams, A.J. ; McQueen, T.M. ; Cava, R.J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-ae513e36a7dd9bbfa335ed89716d2c03d234d60177a055b98b42f0ac16d6f62e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>A. Superconductors</topic><topic>B. Chemical synthesis</topic><topic>Condensed matter: electronic structure, electrical, magnetic, and optical properties</topic><topic>Effects of material synthesis, crystal structure, and chemical composition</topic><topic>Exact sciences and technology</topic><topic>Physics</topic><topic>Superconductivity</topic><topic>Transition temperature variations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Williams, A.J.</creatorcontrib><creatorcontrib>McQueen, T.M.</creatorcontrib><creatorcontrib>Cava, R.J.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Solid state communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Williams, A.J.</au><au>McQueen, T.M.</au><au>Cava, R.J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The stoichiometry of FeSe</atitle><jtitle>Solid state communications</jtitle><date>2009-10-01</date><risdate>2009</risdate><volume>149</volume><issue>37</issue><spage>1507</spage><epage>1509</epage><pages>1507-1509</pages><issn>0038-1098</issn><eissn>1879-2766</eissn><coden>SSCOA4</coden><abstract>Tetragonal iron selenide, FeSe, the layered parent compound of the recently discovered superconducting arsenide family, has previously been shown to be non-magnetic and superconducting with a critical temperature near 8 K. There has, however, been a lack of consensus as to whether selenium vacancies present due to large deviations from ideal stoichiometry are required to give rise to the superconductivity. Here we describe the results of experiments that demonstrate simply that superconducting iron selenide can only be synthesized as a pure material when near stoichiometric (i.e. FeSe). Significant selenium deficiency or excess gives rise to secondary magnetic phases, and a suppression of the superconductivity.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ssc.2009.07.011</doi><tpages>3</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0038-1098
ispartof Solid state communications, 2009-10, Vol.149 (37), p.1507-1509
issn 0038-1098
1879-2766
language eng
recordid cdi_proquest_miscellaneous_36291098
source ScienceDirect Freedom Collection
subjects A. Superconductors
B. Chemical synthesis
Condensed matter: electronic structure, electrical, magnetic, and optical properties
Effects of material synthesis, crystal structure, and chemical composition
Exact sciences and technology
Physics
Superconductivity
Transition temperature variations
title The stoichiometry of FeSe
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T02%3A36%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20stoichiometry%20of%20FeSe&rft.jtitle=Solid%20state%20communications&rft.au=Williams,%20A.J.&rft.date=2009-10-01&rft.volume=149&rft.issue=37&rft.spage=1507&rft.epage=1509&rft.pages=1507-1509&rft.issn=0038-1098&rft.eissn=1879-2766&rft.coden=SSCOA4&rft_id=info:doi/10.1016/j.ssc.2009.07.011&rft_dat=%3Cproquest_cross%3E36291098%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c358t-ae513e36a7dd9bbfa335ed89716d2c03d234d60177a055b98b42f0ac16d6f62e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=36291098&rft_id=info:pmid/&rfr_iscdi=true