Loading…
Blind Separation of Underdetermined Convolutive Mixtures Using Their Time-Frequency Representation
This paper considers the blind separation of nonstationary sources in the underdetermined convolutive mixture case. We introduce, two methods based on the sparsity assumption of the sources in the time-frequency (TF) domain. The first one assumes that the sources are disjoint in the TF domain, i.e.,...
Saved in:
Published in: | IEEE transactions on audio, speech, and language processing speech, and language processing, 2007-07, Vol.15 (5), p.1540-1550 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This paper considers the blind separation of nonstationary sources in the underdetermined convolutive mixture case. We introduce, two methods based on the sparsity assumption of the sources in the time-frequency (TF) domain. The first one assumes that the sources are disjoint in the TF domain, i.e., there is at most one source signal present at a given point in the TF domain. In the second method, we relax this assumption by allowing the sources to be TF-nondisjoint to a certain extent. In particular, the number of sources present (active) at a TF point should be strictly less than the number of sensors. In that case, the separation can be achieved thanks to subspace projection which allows us to identify the active sources and to estimate their corresponding time-frequency distribution (TFD) values. Another contribution of this paper is a new estimation procedure for the mixing channel in the underdetermined case. Finally, numerical performance evaluations and comparisons of the proposed methods are provided highlighting their effectiveness. |
---|---|
ISSN: | 1558-7916 2329-9290 1558-7924 2329-9304 |
DOI: | 10.1109/TASL.2007.898455 |