Loading…
Compact CFD Modeling of EMC Screen for Radio Base Stations: A Porous Media Approach and a Correlation for the Directional Loss Coefficients
A methodology to obtain the directional pressure loss coefficients in a porous media model of an electromagnetically compatible screen of a radio base station model is presented. The directional loss coefficients of this compact model are validated against a detailed computational fluid dynamics mod...
Saved in:
Published in: | IEEE transactions on components and packaging technologies 2007-12, Vol.30 (4), p.875-885 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c465t-5af9cf49124f339462b33a2397796bec9ae0a4f051bd5d02e64fea8336928c6b3 |
---|---|
cites | cdi_FETCH-LOGICAL-c465t-5af9cf49124f339462b33a2397796bec9ae0a4f051bd5d02e64fea8336928c6b3 |
container_end_page | 885 |
container_issue | 4 |
container_start_page | 875 |
container_title | IEEE transactions on components and packaging technologies |
container_volume | 30 |
creator | Anton, R. Jonsson, H. Moshfegh, B. |
description | A methodology to obtain the directional pressure loss coefficients in a porous media model of an electromagnetically compatible screen of a radio base station model is presented. The directional loss coefficients of this compact model are validated against a detailed computational fluid dynamics model not only by comparing the total pressure drop, but also by evaluating the flow pattern after the screen. The detailed model was validated in an earlier article by the authors. A parametric study is conducted for 174 cases. Seven parameters were investigated: velocity, inlet height, screen porosity, printed circuit board (PCB) thickness, inlet-screen gap, distance between two PCBs and screen thickness. Based on the compact model parametric study, two correlations for the directional loss coefficients are developed as a function of the Reynolds number and the above geometrical parameters. The average disagreement between the compact model that uses the directional loss coefficients from the correlations and the detailed model was of 3% for the prediction of the total pressure drop and less than 6.5% and 9.5% for two coefficients that accurately characterize the flow pattern. |
doi_str_mv | 10.1109/TCAPT.2007.910065 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_36318485</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4381432</ieee_id><sourcerecordid>880664754</sourcerecordid><originalsourceid>FETCH-LOGICAL-c465t-5af9cf49124f339462b33a2397796bec9ae0a4f051bd5d02e64fea8336928c6b3</originalsourceid><addsrcrecordid>eNqNks-O0zAQxiMEEsvCAyAuFgc4QIr_xYn3FtJdQGrFii1cLdcZt17SONipEM_AS-M0aA8cgNNYo998mvn8ZdlTgheEYPlm09TXmwXFuFxIgrEo7mVnpCjKXMqS3p_elOSMMfIwexTjLcaEV1yeZT8bfxi0GVFztURr30Ln-h3yFl2uG3RjAkCPrA_ok26dR291BHQz6tH5Pl6gGl374I8RraF1GtXDELw2e6T7FmnU-BCgO7EniXEPaOkCmKmjO7TyMSYIrHXGQT_Gx9kDq7sIT37X8-zz1eWmeZ-vPr770NSr3HBRjHmhrTSWS0K5ZUxyQbeMacpkWUqxBSM1YM0tLsi2LVpMQXALumJMSFoZsWXn2etZN36H4bhVQ3AHHX4or51aui-18mGnOndUvCykTPirf-Nfx70SJSv_T3zvdopSUUz4yxlP1n07QhzVwUUDXad7SM6qqsJCpD14Il_8lWSCkYpXRQKf_wHe-mNIjie1JMUZOR1FZsiE9A0B7N2iBKspUeqUKDUlSs2JSjPP5hkHAHc8ZxXhjLJfD1_HFA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>864743199</pqid></control><display><type>article</type><title>Compact CFD Modeling of EMC Screen for Radio Base Stations: A Porous Media Approach and a Correlation for the Directional Loss Coefficients</title><source>IEEE Xplore (Online service)</source><creator>Anton, R. ; Jonsson, H. ; Moshfegh, B.</creator><creatorcontrib>Anton, R. ; Jonsson, H. ; Moshfegh, B.</creatorcontrib><description>A methodology to obtain the directional pressure loss coefficients in a porous media model of an electromagnetically compatible screen of a radio base station model is presented. The directional loss coefficients of this compact model are validated against a detailed computational fluid dynamics model not only by comparing the total pressure drop, but also by evaluating the flow pattern after the screen. The detailed model was validated in an earlier article by the authors. A parametric study is conducted for 174 cases. Seven parameters were investigated: velocity, inlet height, screen porosity, printed circuit board (PCB) thickness, inlet-screen gap, distance between two PCBs and screen thickness. Based on the compact model parametric study, two correlations for the directional loss coefficients are developed as a function of the Reynolds number and the above geometrical parameters. The average disagreement between the compact model that uses the directional loss coefficients from the correlations and the detailed model was of 3% for the prediction of the total pressure drop and less than 6.5% and 9.5% for two coefficients that accurately characterize the flow pattern.</description><identifier>ISSN: 1521-3331</identifier><identifier>ISSN: 1557-9972</identifier><identifier>EISSN: 1557-9972</identifier><identifier>DOI: 10.1109/TCAPT.2007.910065</identifier><identifier>CODEN: ITCPFB</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Base stations ; Circuit boards ; Computational fluid dynamics ; Computational modeling ; Directional loss coefficients ; Electromagnetic compatibility ; Electromagnetic compatibility (EMC) screen ; Electromagnetic modeling ; Flow control ; Flow pattern ; Flow uniformity ; Fluid dynamics ; Kinematics ; Kinetic energy ; Loss measurement ; Parametric study ; Porous materials ; Porous media ; Predictive models ; Pressure control ; Pressure drop ; Printed circuit boards ; renormalization group (RNG) ; Reynolds number ; Studies ; TECHNOLOGY ; TEKNIKVETENSKAP ; Viscosity</subject><ispartof>IEEE transactions on components and packaging technologies, 2007-12, Vol.30 (4), p.875-885</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2007</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c465t-5af9cf49124f339462b33a2397796bec9ae0a4f051bd5d02e64fea8336928c6b3</citedby><cites>FETCH-LOGICAL-c465t-5af9cf49124f339462b33a2397796bec9ae0a4f051bd5d02e64fea8336928c6b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4381432$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,54796</link.rule.ids><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:hig:diva-22657$$DView record from Swedish Publication Index$$Hfree_for_read</backlink><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-6737$$DView record from Swedish Publication Index$$Hfree_for_read</backlink><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-47599$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Anton, R.</creatorcontrib><creatorcontrib>Jonsson, H.</creatorcontrib><creatorcontrib>Moshfegh, B.</creatorcontrib><title>Compact CFD Modeling of EMC Screen for Radio Base Stations: A Porous Media Approach and a Correlation for the Directional Loss Coefficients</title><title>IEEE transactions on components and packaging technologies</title><addtitle>TCAPT</addtitle><description>A methodology to obtain the directional pressure loss coefficients in a porous media model of an electromagnetically compatible screen of a radio base station model is presented. The directional loss coefficients of this compact model are validated against a detailed computational fluid dynamics model not only by comparing the total pressure drop, but also by evaluating the flow pattern after the screen. The detailed model was validated in an earlier article by the authors. A parametric study is conducted for 174 cases. Seven parameters were investigated: velocity, inlet height, screen porosity, printed circuit board (PCB) thickness, inlet-screen gap, distance between two PCBs and screen thickness. Based on the compact model parametric study, two correlations for the directional loss coefficients are developed as a function of the Reynolds number and the above geometrical parameters. The average disagreement between the compact model that uses the directional loss coefficients from the correlations and the detailed model was of 3% for the prediction of the total pressure drop and less than 6.5% and 9.5% for two coefficients that accurately characterize the flow pattern.</description><subject>Base stations</subject><subject>Circuit boards</subject><subject>Computational fluid dynamics</subject><subject>Computational modeling</subject><subject>Directional loss coefficients</subject><subject>Electromagnetic compatibility</subject><subject>Electromagnetic compatibility (EMC) screen</subject><subject>Electromagnetic modeling</subject><subject>Flow control</subject><subject>Flow pattern</subject><subject>Flow uniformity</subject><subject>Fluid dynamics</subject><subject>Kinematics</subject><subject>Kinetic energy</subject><subject>Loss measurement</subject><subject>Parametric study</subject><subject>Porous materials</subject><subject>Porous media</subject><subject>Predictive models</subject><subject>Pressure control</subject><subject>Pressure drop</subject><subject>Printed circuit boards</subject><subject>renormalization group (RNG)</subject><subject>Reynolds number</subject><subject>Studies</subject><subject>TECHNOLOGY</subject><subject>TEKNIKVETENSKAP</subject><subject>Viscosity</subject><issn>1521-3331</issn><issn>1557-9972</issn><issn>1557-9972</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNqNks-O0zAQxiMEEsvCAyAuFgc4QIr_xYn3FtJdQGrFii1cLdcZt17SONipEM_AS-M0aA8cgNNYo998mvn8ZdlTgheEYPlm09TXmwXFuFxIgrEo7mVnpCjKXMqS3p_elOSMMfIwexTjLcaEV1yeZT8bfxi0GVFztURr30Ln-h3yFl2uG3RjAkCPrA_ok26dR291BHQz6tH5Pl6gGl374I8RraF1GtXDELw2e6T7FmnU-BCgO7EniXEPaOkCmKmjO7TyMSYIrHXGQT_Gx9kDq7sIT37X8-zz1eWmeZ-vPr770NSr3HBRjHmhrTSWS0K5ZUxyQbeMacpkWUqxBSM1YM0tLsi2LVpMQXALumJMSFoZsWXn2etZN36H4bhVQ3AHHX4or51aui-18mGnOndUvCykTPirf-Nfx70SJSv_T3zvdopSUUz4yxlP1n07QhzVwUUDXad7SM6qqsJCpD14Il_8lWSCkYpXRQKf_wHe-mNIjie1JMUZOR1FZsiE9A0B7N2iBKspUeqUKDUlSs2JSjPP5hkHAHc8ZxXhjLJfD1_HFA</recordid><startdate>20071201</startdate><enddate>20071201</enddate><creator>Anton, R.</creator><creator>Jonsson, H.</creator><creator>Moshfegh, B.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>L7M</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8W</scope><scope>D8V</scope><scope>DG8</scope></search><sort><creationdate>20071201</creationdate><title>Compact CFD Modeling of EMC Screen for Radio Base Stations: A Porous Media Approach and a Correlation for the Directional Loss Coefficients</title><author>Anton, R. ; Jonsson, H. ; Moshfegh, B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c465t-5af9cf49124f339462b33a2397796bec9ae0a4f051bd5d02e64fea8336928c6b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Base stations</topic><topic>Circuit boards</topic><topic>Computational fluid dynamics</topic><topic>Computational modeling</topic><topic>Directional loss coefficients</topic><topic>Electromagnetic compatibility</topic><topic>Electromagnetic compatibility (EMC) screen</topic><topic>Electromagnetic modeling</topic><topic>Flow control</topic><topic>Flow pattern</topic><topic>Flow uniformity</topic><topic>Fluid dynamics</topic><topic>Kinematics</topic><topic>Kinetic energy</topic><topic>Loss measurement</topic><topic>Parametric study</topic><topic>Porous materials</topic><topic>Porous media</topic><topic>Predictive models</topic><topic>Pressure control</topic><topic>Pressure drop</topic><topic>Printed circuit boards</topic><topic>renormalization group (RNG)</topic><topic>Reynolds number</topic><topic>Studies</topic><topic>TECHNOLOGY</topic><topic>TEKNIKVETENSKAP</topic><topic>Viscosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Anton, R.</creatorcontrib><creatorcontrib>Jonsson, H.</creatorcontrib><creatorcontrib>Moshfegh, B.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Xplore (Online service)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Högskolan i Gävle</collection><collection>SWEPUB Kungliga Tekniska Högskolan</collection><collection>SWEPUB Linköpings universitet</collection><jtitle>IEEE transactions on components and packaging technologies</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Anton, R.</au><au>Jonsson, H.</au><au>Moshfegh, B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Compact CFD Modeling of EMC Screen for Radio Base Stations: A Porous Media Approach and a Correlation for the Directional Loss Coefficients</atitle><jtitle>IEEE transactions on components and packaging technologies</jtitle><stitle>TCAPT</stitle><date>2007-12-01</date><risdate>2007</risdate><volume>30</volume><issue>4</issue><spage>875</spage><epage>885</epage><pages>875-885</pages><issn>1521-3331</issn><issn>1557-9972</issn><eissn>1557-9972</eissn><coden>ITCPFB</coden><abstract>A methodology to obtain the directional pressure loss coefficients in a porous media model of an electromagnetically compatible screen of a radio base station model is presented. The directional loss coefficients of this compact model are validated against a detailed computational fluid dynamics model not only by comparing the total pressure drop, but also by evaluating the flow pattern after the screen. The detailed model was validated in an earlier article by the authors. A parametric study is conducted for 174 cases. Seven parameters were investigated: velocity, inlet height, screen porosity, printed circuit board (PCB) thickness, inlet-screen gap, distance between two PCBs and screen thickness. Based on the compact model parametric study, two correlations for the directional loss coefficients are developed as a function of the Reynolds number and the above geometrical parameters. The average disagreement between the compact model that uses the directional loss coefficients from the correlations and the detailed model was of 3% for the prediction of the total pressure drop and less than 6.5% and 9.5% for two coefficients that accurately characterize the flow pattern.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCAPT.2007.910065</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1521-3331 |
ispartof | IEEE transactions on components and packaging technologies, 2007-12, Vol.30 (4), p.875-885 |
issn | 1521-3331 1557-9972 1557-9972 |
language | eng |
recordid | cdi_proquest_miscellaneous_36318485 |
source | IEEE Xplore (Online service) |
subjects | Base stations Circuit boards Computational fluid dynamics Computational modeling Directional loss coefficients Electromagnetic compatibility Electromagnetic compatibility (EMC) screen Electromagnetic modeling Flow control Flow pattern Flow uniformity Fluid dynamics Kinematics Kinetic energy Loss measurement Parametric study Porous materials Porous media Predictive models Pressure control Pressure drop Printed circuit boards renormalization group (RNG) Reynolds number Studies TECHNOLOGY TEKNIKVETENSKAP Viscosity |
title | Compact CFD Modeling of EMC Screen for Radio Base Stations: A Porous Media Approach and a Correlation for the Directional Loss Coefficients |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T11%3A59%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Compact%20CFD%20Modeling%20of%20EMC%20Screen%20for%20Radio%20Base%20Stations:%20A%20Porous%20Media%20Approach%20and%20a%20Correlation%20for%20the%20Directional%20Loss%20Coefficients&rft.jtitle=IEEE%20transactions%20on%20components%20and%20packaging%20technologies&rft.au=Anton,%20R.&rft.date=2007-12-01&rft.volume=30&rft.issue=4&rft.spage=875&rft.epage=885&rft.pages=875-885&rft.issn=1521-3331&rft.eissn=1557-9972&rft.coden=ITCPFB&rft_id=info:doi/10.1109/TCAPT.2007.910065&rft_dat=%3Cproquest_cross%3E880664754%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c465t-5af9cf49124f339462b33a2397796bec9ae0a4f051bd5d02e64fea8336928c6b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=864743199&rft_id=info:pmid/&rft_ieee_id=4381432&rfr_iscdi=true |