Loading…
A Fatigue Crack Growth Model for Random Fiber Composites
Fatigue crack growth behavior of a randomly oriented short carbon fiber rein-forced polyether ether ketone (PEEK) composite is studied at four different load ratios. Based on the experimental data, a new fatigue crack growth model is proposed which accounts for crack growth throughout the entire fat...
Saved in:
Published in: | Journal of composite materials 1997-01, Vol.31 (18), p.1838-1855 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Fatigue crack growth behavior of a randomly oriented short carbon fiber rein-forced polyether ether ketone (PEEK) composite is studied at four different load ratios. Based on the experimental data, a new fatigue crack growth model is proposed which accounts for crack growth throughout the entire fatigue cycle and not just at the maximum load. The proposed model involves a weighted averaging procedure and is found to fit the fatigue crack growth rates at all load ratios in a single power law equation. Finally, it is observed that the fatigue threshold intensity of this material decreases with increasing load ratio. |
---|---|
ISSN: | 0021-9983 1530-793X |
DOI: | 10.1177/002199839703101804 |