Loading…

Micromechanics for Ceramic Matrix Composites via Fiber Substructuring

A generic unit cell model which includes a unique fiber substructuring concept is proposed for the development of micromechanics equations for continuous fiber reinforced ceramic composites. The unit cell consists of three constituents: fiber, matrix and an interphase. In the present approach, the u...

Full description

Saved in:
Bibliographic Details
Published in:Journal of composite materials 1995-03, Vol.29 (5), p.614-633
Main Authors: Mital, S. K., Murthy, P. L. N., Chamis, C. C.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A generic unit cell model which includes a unique fiber substructuring concept is proposed for the development of micromechanics equations for continuous fiber reinforced ceramic composites. The unit cell consists of three constituents: fiber, matrix and an interphase. In the present approach, the unit cell is further subdivided into several slices and the equations of micromechanics are derived for each slice. These are subsequently integrated to obtain ply level properties. A stand-alone computer code containing the micromechanics model as a module is currently being developed specifically for the analysis of ceramic matrix composites. Towards this development, equivalent ply property results for a SiC (silicon carbide fiber) /Ti-15-3 (titanium matrix) composite with a 0.5 fiber volume ratio are presented and compared with those obtained from customary micromechanics models to illustrate the concept. Also, comparisons with limited experimental data for the ceramic matrix composite, SiC/RBSN (Reaction Bonded Silicon Nitride) with a 0.3 fiber volume ratio are given to validate the concepts.
ISSN:0021-9983
1530-793X
DOI:10.1177/002199839502900504