Loading…

Efficient Second Harmonic Generation Through Selective Photonic Crystal-Microcavity Coupling

In this paper, a new 2-D frequency converter based on second harmonic generation (SHG) in GaAs photonic crystal waveguides is proposed. The input waveguide, where the second order nonlinear process takes place, is coupled to a secondary waveguide that is designed to allow only SH propagation. A row...

Full description

Saved in:
Bibliographic Details
Published in:Journal of lightwave technology 2009-11, Vol.27 (21), p.4763-4772
Main Authors: Letizia, R., Obayya, S.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this paper, a new 2-D frequency converter based on second harmonic generation (SHG) in GaAs photonic crystal waveguides is proposed. The input waveguide, where the second order nonlinear process takes place, is coupled to a secondary waveguide that is designed to allow only SH propagation. A row of photonic crystal microcavity resonators is then placed parallel to the waveguides in order to assist the field coupling. By tuning the resonance of the microcavities at second harmonic wave, the waveguides-microcavities arrangement showed good enhancement of conversion efficiency and selectivity. The performance of the proposed frequency converter has been analyzed by using multiresolution time domain (MRTD) scheme developed for nonlinear problems in conjunction with uniaxial perfectly matched layer (UPML) boundary conditions that rigorously truncate the computational window.
ISSN:0733-8724
1558-2213
DOI:10.1109/JLT.2009.2026490