Loading…

Mechanically Flexible Chip-to-Substrate Optical Interconnections Using Optical Pillars

We experimentally characterize the benefits of using surface-normal mechanically flexible optical waveguides, or optical pillars, for chip-to-substrate optical interconnection. In order to benchmark the performance of the optical pillars, the optical coupling efficiency from a light source to an opt...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on advanced packaging 2008-02, Vol.31 (1), p.143-153
Main Authors: Bakir, M.S., Glebov, A.L., Lee, M.G., Kohl, P.A., Meindl, J.D.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c452t-80d72bc62804f70ca8ae4a6480561a7979f1173c421adbdaa0cbaa31a79570883
cites cdi_FETCH-LOGICAL-c452t-80d72bc62804f70ca8ae4a6480561a7979f1173c421adbdaa0cbaa31a79570883
container_end_page 153
container_issue 1
container_start_page 143
container_title IEEE transactions on advanced packaging
container_volume 31
creator Bakir, M.S.
Glebov, A.L.
Lee, M.G.
Kohl, P.A.
Meindl, J.D.
description We experimentally characterize the benefits of using surface-normal mechanically flexible optical waveguides, or optical pillars, for chip-to-substrate optical interconnection. In order to benchmark the performance of the optical pillars, the optical coupling efficiency from a light source to an optical aperture with and without an optical pillar is measured. For a light source with 12deg beam divergence, a 50times150 mum optical pillar improves the coupling efficiency by 2-4 dB compared to pillar-free (free-space) optical coupling. A 30times150 m optical pillar improves the coupling efficiency by 3-4.5 dB. This demonstrates the importance of using optical pillars when small photodetectors (PDs) and dense optical input/outputs (I/Os) are needed. The optical excess losses of 50times150 mum optical pillars are measured to be less than 0.2 dB. Due to the high mechanical flexibility of the pillars, we also demonstrate that optical pillars enhance the optical coupling efficiency between the chip and substrate when they are misaligned in the lateral direction. This is especially important since the coefficient of thermal expansion of the chip and substrate are often mismatched, and preserving optical alignment and interconnection between them is critical during thermal excursions. The lateral mechanical compliance of the optical pillars is also measured and can be as great as 30 mum/mN. The optical pillars are also shown to be compliant under a compressive force thus allowing the optical I/Os to be assembled on nonplanar surfaces such as low-cost organic substrates.
doi_str_mv 10.1109/TADVP.2007.914976
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_36328691</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4447318</ieee_id><sourcerecordid>36328691</sourcerecordid><originalsourceid>FETCH-LOGICAL-c452t-80d72bc62804f70ca8ae4a6480561a7979f1173c421adbdaa0cbaa31a79570883</originalsourceid><addsrcrecordid>eNp90UFLwzAUB_AiCur0A4iXIiheOvOStEmPMp0KEwU3r-E1SzVS05l04L69qRs7ePCUwPu9x0v-SXICZAhAyqvp9c3r85ASIoYl8FIUO8kB5LnIylKS3f5OIWOMsv3kMIQPQoBLTg-S10ej39FZjU2zSseN-bZVY9LRu11kXZu9LKvQeexM-rToepQ-uM543TpndGdbF9JZsO5tW362TYM-HCV7NTbBHG_OQTIb305H99nk6e5hdD3JNM9pl0kyF7TSBZWE14JolGg4FlySvAAUpShrAME0p4Dzao5IdIXI-lIuiJRskFys5y58-7U0oVOfNmgTd3CmXQbFCkZlUUKEl_9CKARQRqmkkZ79oR_t0rv4DCULRoAxySOCNdK-DcGbWi28_US_UkBUn4j6TUT1iah1IrHnfDMYQ_yr2qPTNmwbI43bsjy607WzxphtmXMuGEj2Ax1Ck4U</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>863013384</pqid></control><display><type>article</type><title>Mechanically Flexible Chip-to-Substrate Optical Interconnections Using Optical Pillars</title><source>IEEE Xplore (Online service)</source><creator>Bakir, M.S. ; Glebov, A.L. ; Lee, M.G. ; Kohl, P.A. ; Meindl, J.D.</creator><creatorcontrib>Bakir, M.S. ; Glebov, A.L. ; Lee, M.G. ; Kohl, P.A. ; Meindl, J.D.</creatorcontrib><description>We experimentally characterize the benefits of using surface-normal mechanically flexible optical waveguides, or optical pillars, for chip-to-substrate optical interconnection. In order to benchmark the performance of the optical pillars, the optical coupling efficiency from a light source to an optical aperture with and without an optical pillar is measured. For a light source with 12deg beam divergence, a 50times150 mum optical pillar improves the coupling efficiency by 2-4 dB compared to pillar-free (free-space) optical coupling. A 30times150 m optical pillar improves the coupling efficiency by 3-4.5 dB. This demonstrates the importance of using optical pillars when small photodetectors (PDs) and dense optical input/outputs (I/Os) are needed. The optical excess losses of 50times150 mum optical pillars are measured to be less than 0.2 dB. Due to the high mechanical flexibility of the pillars, we also demonstrate that optical pillars enhance the optical coupling efficiency between the chip and substrate when they are misaligned in the lateral direction. This is especially important since the coefficient of thermal expansion of the chip and substrate are often mismatched, and preserving optical alignment and interconnection between them is critical during thermal excursions. The lateral mechanical compliance of the optical pillars is also measured and can be as great as 30 mum/mN. The optical pillars are also shown to be compliant under a compressive force thus allowing the optical I/Os to be assembled on nonplanar surfaces such as low-cost organic substrates.</description><identifier>ISSN: 1521-3323</identifier><identifier>EISSN: 1557-9980</identifier><identifier>DOI: 10.1109/TADVP.2007.914976</identifier><identifier>CODEN: ITAPFZ</identifier><language>eng</language><publisher>Piscataway, NY: IEEE</publisher><subject>Apertures ; Applied sciences ; Assembly ; Chips ; Circuit properties ; compliant interconnects ; Design. Technologies. Operation analysis. Testing ; Efficiency ; Electric, optical and optoelectronic circuits ; Electronics ; Exact sciences and technology ; flip-chip ; input/output (I/O) ; Integrated circuits ; Integrated optics. Optical fibers and wave guides ; integration ; Interconnections ; Joining ; Light sources ; Miscellaneous ; Noise levels ; Optical and optoelectronic circuits ; Optical coupling ; Optical interconnections ; optical interconnects ; Optical surface waves ; Optical waveguides ; Optoelectronic devices ; packaging ; Photodetectors ; Pillars ; polymers ; Semiconductor device measurement ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; Surface waves ; Thermal expansion ; waveguides</subject><ispartof>IEEE transactions on advanced packaging, 2008-02, Vol.31 (1), p.143-153</ispartof><rights>2008 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2008</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c452t-80d72bc62804f70ca8ae4a6480561a7979f1173c421adbdaa0cbaa31a79570883</citedby><cites>FETCH-LOGICAL-c452t-80d72bc62804f70ca8ae4a6480561a7979f1173c421adbdaa0cbaa31a79570883</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4447318$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=20063235$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Bakir, M.S.</creatorcontrib><creatorcontrib>Glebov, A.L.</creatorcontrib><creatorcontrib>Lee, M.G.</creatorcontrib><creatorcontrib>Kohl, P.A.</creatorcontrib><creatorcontrib>Meindl, J.D.</creatorcontrib><title>Mechanically Flexible Chip-to-Substrate Optical Interconnections Using Optical Pillars</title><title>IEEE transactions on advanced packaging</title><addtitle>TADVP</addtitle><description>We experimentally characterize the benefits of using surface-normal mechanically flexible optical waveguides, or optical pillars, for chip-to-substrate optical interconnection. In order to benchmark the performance of the optical pillars, the optical coupling efficiency from a light source to an optical aperture with and without an optical pillar is measured. For a light source with 12deg beam divergence, a 50times150 mum optical pillar improves the coupling efficiency by 2-4 dB compared to pillar-free (free-space) optical coupling. A 30times150 m optical pillar improves the coupling efficiency by 3-4.5 dB. This demonstrates the importance of using optical pillars when small photodetectors (PDs) and dense optical input/outputs (I/Os) are needed. The optical excess losses of 50times150 mum optical pillars are measured to be less than 0.2 dB. Due to the high mechanical flexibility of the pillars, we also demonstrate that optical pillars enhance the optical coupling efficiency between the chip and substrate when they are misaligned in the lateral direction. This is especially important since the coefficient of thermal expansion of the chip and substrate are often mismatched, and preserving optical alignment and interconnection between them is critical during thermal excursions. The lateral mechanical compliance of the optical pillars is also measured and can be as great as 30 mum/mN. The optical pillars are also shown to be compliant under a compressive force thus allowing the optical I/Os to be assembled on nonplanar surfaces such as low-cost organic substrates.</description><subject>Apertures</subject><subject>Applied sciences</subject><subject>Assembly</subject><subject>Chips</subject><subject>Circuit properties</subject><subject>compliant interconnects</subject><subject>Design. Technologies. Operation analysis. Testing</subject><subject>Efficiency</subject><subject>Electric, optical and optoelectronic circuits</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>flip-chip</subject><subject>input/output (I/O)</subject><subject>Integrated circuits</subject><subject>Integrated optics. Optical fibers and wave guides</subject><subject>integration</subject><subject>Interconnections</subject><subject>Joining</subject><subject>Light sources</subject><subject>Miscellaneous</subject><subject>Noise levels</subject><subject>Optical and optoelectronic circuits</subject><subject>Optical coupling</subject><subject>Optical interconnections</subject><subject>optical interconnects</subject><subject>Optical surface waves</subject><subject>Optical waveguides</subject><subject>Optoelectronic devices</subject><subject>packaging</subject><subject>Photodetectors</subject><subject>Pillars</subject><subject>polymers</subject><subject>Semiconductor device measurement</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>Surface waves</subject><subject>Thermal expansion</subject><subject>waveguides</subject><issn>1521-3323</issn><issn>1557-9980</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNp90UFLwzAUB_AiCur0A4iXIiheOvOStEmPMp0KEwU3r-E1SzVS05l04L69qRs7ePCUwPu9x0v-SXICZAhAyqvp9c3r85ASIoYl8FIUO8kB5LnIylKS3f5OIWOMsv3kMIQPQoBLTg-S10ej39FZjU2zSseN-bZVY9LRu11kXZu9LKvQeexM-rToepQ-uM543TpndGdbF9JZsO5tW362TYM-HCV7NTbBHG_OQTIb305H99nk6e5hdD3JNM9pl0kyF7TSBZWE14JolGg4FlySvAAUpShrAME0p4Dzao5IdIXI-lIuiJRskFys5y58-7U0oVOfNmgTd3CmXQbFCkZlUUKEl_9CKARQRqmkkZ79oR_t0rv4DCULRoAxySOCNdK-DcGbWi28_US_UkBUn4j6TUT1iah1IrHnfDMYQ_yr2qPTNmwbI43bsjy607WzxphtmXMuGEj2Ax1Ck4U</recordid><startdate>20080201</startdate><enddate>20080201</enddate><creator>Bakir, M.S.</creator><creator>Glebov, A.L.</creator><creator>Lee, M.G.</creator><creator>Kohl, P.A.</creator><creator>Meindl, J.D.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>L7M</scope></search><sort><creationdate>20080201</creationdate><title>Mechanically Flexible Chip-to-Substrate Optical Interconnections Using Optical Pillars</title><author>Bakir, M.S. ; Glebov, A.L. ; Lee, M.G. ; Kohl, P.A. ; Meindl, J.D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c452t-80d72bc62804f70ca8ae4a6480561a7979f1173c421adbdaa0cbaa31a79570883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Apertures</topic><topic>Applied sciences</topic><topic>Assembly</topic><topic>Chips</topic><topic>Circuit properties</topic><topic>compliant interconnects</topic><topic>Design. Technologies. Operation analysis. Testing</topic><topic>Efficiency</topic><topic>Electric, optical and optoelectronic circuits</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>flip-chip</topic><topic>input/output (I/O)</topic><topic>Integrated circuits</topic><topic>Integrated optics. Optical fibers and wave guides</topic><topic>integration</topic><topic>Interconnections</topic><topic>Joining</topic><topic>Light sources</topic><topic>Miscellaneous</topic><topic>Noise levels</topic><topic>Optical and optoelectronic circuits</topic><topic>Optical coupling</topic><topic>Optical interconnections</topic><topic>optical interconnects</topic><topic>Optical surface waves</topic><topic>Optical waveguides</topic><topic>Optoelectronic devices</topic><topic>packaging</topic><topic>Photodetectors</topic><topic>Pillars</topic><topic>polymers</topic><topic>Semiconductor device measurement</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>Surface waves</topic><topic>Thermal expansion</topic><topic>waveguides</topic><toplevel>online_resources</toplevel><creatorcontrib>Bakir, M.S.</creatorcontrib><creatorcontrib>Glebov, A.L.</creatorcontrib><creatorcontrib>Lee, M.G.</creatorcontrib><creatorcontrib>Kohl, P.A.</creatorcontrib><creatorcontrib>Meindl, J.D.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on advanced packaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bakir, M.S.</au><au>Glebov, A.L.</au><au>Lee, M.G.</au><au>Kohl, P.A.</au><au>Meindl, J.D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanically Flexible Chip-to-Substrate Optical Interconnections Using Optical Pillars</atitle><jtitle>IEEE transactions on advanced packaging</jtitle><stitle>TADVP</stitle><date>2008-02-01</date><risdate>2008</risdate><volume>31</volume><issue>1</issue><spage>143</spage><epage>153</epage><pages>143-153</pages><issn>1521-3323</issn><eissn>1557-9980</eissn><coden>ITAPFZ</coden><abstract>We experimentally characterize the benefits of using surface-normal mechanically flexible optical waveguides, or optical pillars, for chip-to-substrate optical interconnection. In order to benchmark the performance of the optical pillars, the optical coupling efficiency from a light source to an optical aperture with and without an optical pillar is measured. For a light source with 12deg beam divergence, a 50times150 mum optical pillar improves the coupling efficiency by 2-4 dB compared to pillar-free (free-space) optical coupling. A 30times150 m optical pillar improves the coupling efficiency by 3-4.5 dB. This demonstrates the importance of using optical pillars when small photodetectors (PDs) and dense optical input/outputs (I/Os) are needed. The optical excess losses of 50times150 mum optical pillars are measured to be less than 0.2 dB. Due to the high mechanical flexibility of the pillars, we also demonstrate that optical pillars enhance the optical coupling efficiency between the chip and substrate when they are misaligned in the lateral direction. This is especially important since the coefficient of thermal expansion of the chip and substrate are often mismatched, and preserving optical alignment and interconnection between them is critical during thermal excursions. The lateral mechanical compliance of the optical pillars is also measured and can be as great as 30 mum/mN. The optical pillars are also shown to be compliant under a compressive force thus allowing the optical I/Os to be assembled on nonplanar surfaces such as low-cost organic substrates.</abstract><cop>Piscataway, NY</cop><pub>IEEE</pub><doi>10.1109/TADVP.2007.914976</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1521-3323
ispartof IEEE transactions on advanced packaging, 2008-02, Vol.31 (1), p.143-153
issn 1521-3323
1557-9980
language eng
recordid cdi_proquest_miscellaneous_36328691
source IEEE Xplore (Online service)
subjects Apertures
Applied sciences
Assembly
Chips
Circuit properties
compliant interconnects
Design. Technologies. Operation analysis. Testing
Efficiency
Electric, optical and optoelectronic circuits
Electronics
Exact sciences and technology
flip-chip
input/output (I/O)
Integrated circuits
Integrated optics. Optical fibers and wave guides
integration
Interconnections
Joining
Light sources
Miscellaneous
Noise levels
Optical and optoelectronic circuits
Optical coupling
Optical interconnections
optical interconnects
Optical surface waves
Optical waveguides
Optoelectronic devices
packaging
Photodetectors
Pillars
polymers
Semiconductor device measurement
Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices
Surface waves
Thermal expansion
waveguides
title Mechanically Flexible Chip-to-Substrate Optical Interconnections Using Optical Pillars
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T23%3A11%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanically%20Flexible%20Chip-to-Substrate%20Optical%20Interconnections%20Using%20Optical%20Pillars&rft.jtitle=IEEE%20transactions%20on%20advanced%20packaging&rft.au=Bakir,%20M.S.&rft.date=2008-02-01&rft.volume=31&rft.issue=1&rft.spage=143&rft.epage=153&rft.pages=143-153&rft.issn=1521-3323&rft.eissn=1557-9980&rft.coden=ITAPFZ&rft_id=info:doi/10.1109/TADVP.2007.914976&rft_dat=%3Cproquest_cross%3E36328691%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c452t-80d72bc62804f70ca8ae4a6480561a7979f1173c421adbdaa0cbaa31a79570883%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=863013384&rft_id=info:pmid/&rft_ieee_id=4447318&rfr_iscdi=true