Loading…

A Method for Assessing Spectral Image Utility

The utility of an image is an attribute that describes the ability of that image to satisfy performance requirements for a particular application. This paper establishes the context for spectral image utility by first reviewing traditional approaches to assessing panchromatic image utility and then...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on geoscience and remote sensing 2009-06, Vol.47 (6), p.1698-1706
Main Authors: Stefanou, M.S., Kerekes, J.P.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c385t-df6ea54b1588537cc44414dad27232b523a66be57d2facd481f9baf995d37a3
cites cdi_FETCH-LOGICAL-c385t-df6ea54b1588537cc44414dad27232b523a66be57d2facd481f9baf995d37a3
container_end_page 1706
container_issue 6
container_start_page 1698
container_title IEEE transactions on geoscience and remote sensing
container_volume 47
creator Stefanou, M.S.
Kerekes, J.P.
description The utility of an image is an attribute that describes the ability of that image to satisfy performance requirements for a particular application. This paper establishes the context for spectral image utility by first reviewing traditional approaches to assessing panchromatic image utility and then discussing differences for spectral imagery. We define spectral image utility for the subpixel target detection application as the area under the receiver operating curve summarized across a range of target detection scenario parameters. We propose a new approach to assessing the utility of any spectral image for any target type and size and detection algorithm. Using six airborne hyperspectral images, we demonstrate the sensitivity of the assessed image utility to various target detection scenario parameters and show the flexibility of this approach as a tool to answer specific user information requirements. The results of this investigation lead to a better understanding of spectral image information vis-a-vis target detection performance and provide a step toward quantifying the ability of a spectral image to satisfy information exploitation requirements.
doi_str_mv 10.1109/TGRS.2008.2006364
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_miscellaneous_36331834</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4783039</ieee_id><sourcerecordid>869849638</sourcerecordid><originalsourceid>FETCH-LOGICAL-c385t-df6ea54b1588537cc44414dad27232b523a66be57d2facd481f9baf995d37a3</originalsourceid><addsrcrecordid>eNp9kE1LAzEURYMoWKs_QNwMgrqamu-PZSlaCxXB1nXIZJI6ZTpTk-mi_94MLV24cPPe4p174R0AbhEcIQTV83L6uRhhCGU_OOH0DAwQYzKHnNJzMIBI8RxLhS_BVYxrCBFlSAxAPs7eXffdlplvQzaO0cVYNatssXW2C6bOZhuzctlXV9VVt78GF97U0d0c9xAsXl-Wk7d8_jGdTcbz3BLJurz03BlGC8SkZERYSylFtDQlFpjggmFiOC8cEyX2xpZUIq8K45ViJRGGDMHToXUb2p-di53eVNG6ujaNa3dRS64kVZzIRD7-SxJOCJKEJvD-D7hud6FJP2jJBE2Y6tvQAbKhjTE4r7eh2piw1wjq3rLuLevesj5aTpmHY7GJ1tQ-mMZW8RTESFDCCEzc3YGrnHOnMxUy3RT5BUdpgzU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>857463398</pqid></control><display><type>article</type><title>A Method for Assessing Spectral Image Utility</title><source>IEEE Xplore (Online service)</source><creator>Stefanou, M.S. ; Kerekes, J.P.</creator><creatorcontrib>Stefanou, M.S. ; Kerekes, J.P.</creatorcontrib><description>The utility of an image is an attribute that describes the ability of that image to satisfy performance requirements for a particular application. This paper establishes the context for spectral image utility by first reviewing traditional approaches to assessing panchromatic image utility and then discussing differences for spectral imagery. We define spectral image utility for the subpixel target detection application as the area under the receiver operating curve summarized across a range of target detection scenario parameters. We propose a new approach to assessing the utility of any spectral image for any target type and size and detection algorithm. Using six airborne hyperspectral images, we demonstrate the sensitivity of the assessed image utility to various target detection scenario parameters and show the flexibility of this approach as a tool to answer specific user information requirements. The results of this investigation lead to a better understanding of spectral image information vis-a-vis target detection performance and provide a step toward quantifying the ability of a spectral image to satisfy information exploitation requirements.</description><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/TGRS.2008.2006364</identifier><identifier>CODEN: IGRSD2</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Airborne sensing ; Applied geophysics ; Detection algorithms ; Earth sciences ; Earth, ocean, space ; Exact sciences and technology ; Flexibility ; Hyperspectral imagery ; Hyperspectral imaging ; Hyperspectral sensors ; Image color analysis ; Image sampling ; Image sensors ; Internal geophysics ; Object detection ; Particle measurements ; Receivers ; Spatial resolution ; Spectra ; spectral image analysis ; spectral image utility ; Spectroscopy ; Target detection ; Utilities</subject><ispartof>IEEE transactions on geoscience and remote sensing, 2009-06, Vol.47 (6), p.1698-1706</ispartof><rights>2009 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c385t-df6ea54b1588537cc44414dad27232b523a66be57d2facd481f9baf995d37a3</citedby><cites>FETCH-LOGICAL-c385t-df6ea54b1588537cc44414dad27232b523a66be57d2facd481f9baf995d37a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4783039$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,778,782,27911,27912,54783</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=21743530$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Stefanou, M.S.</creatorcontrib><creatorcontrib>Kerekes, J.P.</creatorcontrib><title>A Method for Assessing Spectral Image Utility</title><title>IEEE transactions on geoscience and remote sensing</title><addtitle>TGRS</addtitle><description>The utility of an image is an attribute that describes the ability of that image to satisfy performance requirements for a particular application. This paper establishes the context for spectral image utility by first reviewing traditional approaches to assessing panchromatic image utility and then discussing differences for spectral imagery. We define spectral image utility for the subpixel target detection application as the area under the receiver operating curve summarized across a range of target detection scenario parameters. We propose a new approach to assessing the utility of any spectral image for any target type and size and detection algorithm. Using six airborne hyperspectral images, we demonstrate the sensitivity of the assessed image utility to various target detection scenario parameters and show the flexibility of this approach as a tool to answer specific user information requirements. The results of this investigation lead to a better understanding of spectral image information vis-a-vis target detection performance and provide a step toward quantifying the ability of a spectral image to satisfy information exploitation requirements.</description><subject>Airborne sensing</subject><subject>Applied geophysics</subject><subject>Detection algorithms</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>Flexibility</subject><subject>Hyperspectral imagery</subject><subject>Hyperspectral imaging</subject><subject>Hyperspectral sensors</subject><subject>Image color analysis</subject><subject>Image sampling</subject><subject>Image sensors</subject><subject>Internal geophysics</subject><subject>Object detection</subject><subject>Particle measurements</subject><subject>Receivers</subject><subject>Spatial resolution</subject><subject>Spectra</subject><subject>spectral image analysis</subject><subject>spectral image utility</subject><subject>Spectroscopy</subject><subject>Target detection</subject><subject>Utilities</subject><issn>0196-2892</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEURYMoWKs_QNwMgrqamu-PZSlaCxXB1nXIZJI6ZTpTk-mi_94MLV24cPPe4p174R0AbhEcIQTV83L6uRhhCGU_OOH0DAwQYzKHnNJzMIBI8RxLhS_BVYxrCBFlSAxAPs7eXffdlplvQzaO0cVYNatssXW2C6bOZhuzctlXV9VVt78GF97U0d0c9xAsXl-Wk7d8_jGdTcbz3BLJurz03BlGC8SkZERYSylFtDQlFpjggmFiOC8cEyX2xpZUIq8K45ViJRGGDMHToXUb2p-di53eVNG6ujaNa3dRS64kVZzIRD7-SxJOCJKEJvD-D7hud6FJP2jJBE2Y6tvQAbKhjTE4r7eh2piw1wjq3rLuLevesj5aTpmHY7GJ1tQ-mMZW8RTESFDCCEzc3YGrnHOnMxUy3RT5BUdpgzU</recordid><startdate>20090601</startdate><enddate>20090601</enddate><creator>Stefanou, M.S.</creator><creator>Kerekes, J.P.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>7SP</scope><scope>F28</scope></search><sort><creationdate>20090601</creationdate><title>A Method for Assessing Spectral Image Utility</title><author>Stefanou, M.S. ; Kerekes, J.P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c385t-df6ea54b1588537cc44414dad27232b523a66be57d2facd481f9baf995d37a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Airborne sensing</topic><topic>Applied geophysics</topic><topic>Detection algorithms</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>Flexibility</topic><topic>Hyperspectral imagery</topic><topic>Hyperspectral imaging</topic><topic>Hyperspectral sensors</topic><topic>Image color analysis</topic><topic>Image sampling</topic><topic>Image sensors</topic><topic>Internal geophysics</topic><topic>Object detection</topic><topic>Particle measurements</topic><topic>Receivers</topic><topic>Spatial resolution</topic><topic>Spectra</topic><topic>spectral image analysis</topic><topic>spectral image utility</topic><topic>Spectroscopy</topic><topic>Target detection</topic><topic>Utilities</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stefanou, M.S.</creatorcontrib><creatorcontrib>Kerekes, J.P.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stefanou, M.S.</au><au>Kerekes, J.P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Method for Assessing Spectral Image Utility</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><stitle>TGRS</stitle><date>2009-06-01</date><risdate>2009</risdate><volume>47</volume><issue>6</issue><spage>1698</spage><epage>1706</epage><pages>1698-1706</pages><issn>0196-2892</issn><eissn>1558-0644</eissn><coden>IGRSD2</coden><abstract>The utility of an image is an attribute that describes the ability of that image to satisfy performance requirements for a particular application. This paper establishes the context for spectral image utility by first reviewing traditional approaches to assessing panchromatic image utility and then discussing differences for spectral imagery. We define spectral image utility for the subpixel target detection application as the area under the receiver operating curve summarized across a range of target detection scenario parameters. We propose a new approach to assessing the utility of any spectral image for any target type and size and detection algorithm. Using six airborne hyperspectral images, we demonstrate the sensitivity of the assessed image utility to various target detection scenario parameters and show the flexibility of this approach as a tool to answer specific user information requirements. The results of this investigation lead to a better understanding of spectral image information vis-a-vis target detection performance and provide a step toward quantifying the ability of a spectral image to satisfy information exploitation requirements.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TGRS.2008.2006364</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0196-2892
ispartof IEEE transactions on geoscience and remote sensing, 2009-06, Vol.47 (6), p.1698-1706
issn 0196-2892
1558-0644
language eng
recordid cdi_proquest_miscellaneous_36331834
source IEEE Xplore (Online service)
subjects Airborne sensing
Applied geophysics
Detection algorithms
Earth sciences
Earth, ocean, space
Exact sciences and technology
Flexibility
Hyperspectral imagery
Hyperspectral imaging
Hyperspectral sensors
Image color analysis
Image sampling
Image sensors
Internal geophysics
Object detection
Particle measurements
Receivers
Spatial resolution
Spectra
spectral image analysis
spectral image utility
Spectroscopy
Target detection
Utilities
title A Method for Assessing Spectral Image Utility
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T01%3A26%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Method%20for%20Assessing%20Spectral%20Image%20Utility&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=Stefanou,%20M.S.&rft.date=2009-06-01&rft.volume=47&rft.issue=6&rft.spage=1698&rft.epage=1706&rft.pages=1698-1706&rft.issn=0196-2892&rft.eissn=1558-0644&rft.coden=IGRSD2&rft_id=info:doi/10.1109/TGRS.2008.2006364&rft_dat=%3Cproquest_ieee_%3E869849638%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c385t-df6ea54b1588537cc44414dad27232b523a66be57d2facd481f9baf995d37a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=857463398&rft_id=info:pmid/&rft_ieee_id=4783039&rfr_iscdi=true